
N U M E R I C A L  M E T H O D S
I N H E AT  C O N D U C T I O N

So far we have mostly considered relatively simple heat conduction prob-
lems involving simple geometries with simple boundary conditions be-
cause only such simple problems can be solved analytically. But many

problems encountered in practice involve complicated geometries with com-
plex boundary conditions or variable properties and cannot be solved ana-
lytically. In such cases, sufficiently accurate approximate solutions can be
obtained by computers using a numerical method.

Analytical solution methods such as those presented in Chapter 2 are based
on solving the governing differential equation together with the boundary con-
ditions. They result in solution functions for the temperature at every point in
the medium. Numerical methods, on the other hand, are based on replacing
the differential equation by a set of n algebraic equations for the unknown
temperatures at n selected points in the medium, and the simultaneous solu-
tion of these equations results in the temperature values at those discrete
points.

There are several ways of obtaining the numerical formulation of a heat
conduction problem, such as the finite difference method, the finite element
method, the boundary element method, and the energy balance (or control
volume) method. Each method has its own advantages and disadvantages, and
each is used in practice. In this chapter we will use primarily the energy bal-
ance approach since it is based on the familiar energy balances on control vol-
umes instead of heavy mathematical formulations, and thus it gives a better
physical feel for the problem. Besides, it results in the same set of algebraic
equations as the finite difference method. In this chapter, the numerical for-
mulation and solution of heat conduction problems are demonstrated for both
steady and transient cases in various geometries.
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5–1 WHY NUMERICAL METHODS?
The ready availability of high-speed computers and easy-to-use powerful soft-
ware packages has had a major impact on engineering education and practice
in recent years. Engineers in the past had to rely on analytical skills to solve
significant engineering problems, and thus they had to undergo a rigorous
training in mathematics. Today’s engineers, on the other hand, have access to
a tremendous amount of computation power under their fingertips, and they
mostly need to understand the physical nature of the problem and interpret the
results. But they also need to understand how calculations are performed by
the computers to develop an awareness of the processes involved and the lim-
itations, while avoiding any possible pitfalls.

In Chapter 2 we solved various heat conduction problems in various geo-
metries in a systematic but highly mathematical manner by (1) deriving the
governing differential equation by performing an energy balance on a differ-
ential volume element, (2) expressing the boundary conditions in the proper
mathematical form, and (3) solving the differential equation and applying the
boundary conditions to determine the integration constants. This resulted in a
solution function for the temperature distribution in the medium, and the so-
lution obtained in this manner is called the analytical solution of the problem.
For example, the mathematical formulation of one-dimensional steady heat
conduction in a sphere of radius r0 whose outer surface is maintained at a uni-
form temperature of T1 with uniform heat generation at a rate of g·0 was ex-
pressed as (Fig. 5–1)

� � 0

� 0 and T(r0) � T1 (5-1)

whose (analytical) solution is

T(r) � T1 � � r 2) (5-2)

This is certainly a very desirable form of solution since the temperature at
any point within the sphere can be determined simply by substituting the
r-coordinate of the point into the analytical solution function above. The ana-
lytical solution of a problem is also referred to as the exact solution since it
satisfies the differential equation and the boundary conditions. This can be
verified by substituting the solution function into the differential equation and
the boundary conditions. Further, the rate of heat flow at any location within
the sphere or its surface can be determined by taking the derivative of the so-
lution function T(r) and substituting it into Fourier’s law as

Q
· (r) � �kA � �k(4�r 2) � (5-3)

The analysis above did not require any mathematical sophistication beyond
the level of simple integration, and you are probably wondering why anyone
would ask for something else. After all, the solutions obtained are exact and
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easy to use. Besides, they are instructive since they show clearly the func-
tional dependence of temperature and heat transfer on the independent vari-
able r. Well, there are several reasons for searching for alternative solution
methods.

1 Limitations
Analytical solution methods are limited to highly simplified problems in sim-
ple geometries (Fig. 5–2). The geometry must be such that its entire surface
can be described mathematically in a coordinate system by setting the vari-
ables equal to constants. That is, it must fit into a coordinate system perfectly
with nothing sticking out or in. In the case of one-dimensional heat conduc-
tion in a solid sphere of radius r0, for example, the entire outer surface can be
described by r � r0. Likewise, the surfaces of a finite solid cylinder of radius
r0 and height H can be described by r � r0 for the side surface and z � 0 and
z � H for the bottom and top surfaces, respectively. Even minor complica-
tions in geometry can make an analytical solution impossible. For example, a
spherical object with an extrusion like a handle at some location is impossible
to handle analytically since the boundary conditions in this case cannot be ex-
pressed in any familiar coordinate system.

Even in simple geometries, heat transfer problems cannot be solved analyt-
ically if the thermal conditions are not sufficiently simple. For example, the
consideration of the variation of thermal conductivity with temperature, the
variation of the heat transfer coefficient over the surface, or the radiation heat
transfer on the surfaces can make it impossible to obtain an analytical solu-
tion. Therefore, analytical solutions are limited to problems that are simple or
can be simplified with reasonable approximations.

2 Better Modeling
We mentioned earlier that analytical solutions are exact solutions since they
do not involve any approximations. But this statement needs some clarifica-
tion. Distinction should be made between an actual real-world problem and
the mathematical model that is an idealized representation of it. The solutions
we get are the solutions of mathematical models, and the degree of applica-
bility of these solutions to the actual physical problems depends on the accu-
racy of the model. An “approximate” solution of a realistic model of a
physical problem is usually more accurate than the “exact” solution of a crude
mathematical model (Fig. 5–3).

When attempting to get an analytical solution to a physical problem, there
is always the tendency to oversimplify the problem to make the mathematical
model sufficiently simple to warrant an analytical solution. Therefore, it is
common practice to ignore any effects that cause mathematical complications
such as nonlinearities in the differential equation or the boundary conditions.
So it comes as no surprise that nonlinearities such as temperature dependence
of thermal conductivity and the radiation boundary conditions are seldom con-
sidered in analytical solutions. A mathematical model intended for a numeri-
cal solution is likely to represent the actual problem better. Therefore, the
numerical solution of engineering problems has now become the norm rather
than the exception even when analytical solutions are available.
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3 Flexibility
Engineering problems often require extensive parametric studies to under-
stand the influence of some variables on the solution in order to choose the
right set of variables and to answer some “what-if ” questions. This is an iter-
ative process that is extremely tedious and time-consuming if done by hand.
Computers and numerical methods are ideally suited for such calculations,
and a wide range of related problems can be solved by minor modifications in
the code or input variables. Today it is almost unthinkable to perform any sig-
nificant optimization studies in engineering without the power and flexibility
of computers and numerical methods.

4 Complications
Some problems can be solved analytically, but the solution procedure is so
complex and the resulting solution expressions so complicated that it is not
worth all that effort. With the exception of steady one-dimensional or transient
lumped system problems, all heat conduction problems result in partial
differential equations. Solving such equations usually requires mathematical
sophistication beyond that acquired at the undergraduate level, such as orthog-
onality, eigenvalues, Fourier and Laplace transforms, Bessel and Legendre
functions, and infinite series. In such cases, the evaluation of the solution,
which often involves double or triple summations of infinite series at a speci-
fied point, is a challenge in itself (Fig. 5–4). Therefore, even when the solu-
tions are available in some handbooks, they are intimidating enough to scare
prospective users away.

5 Human Nature
As human beings, we like to sit back and make wishes, and we like our wishes
to come true without much effort. The invention of TV remote controls made
us feel like kings in our homes since the commands we give in our comfort-
able chairs by pressing buttons are immediately carried out by the obedient
TV sets. After all, what good is cable TV without a remote control. We cer-
tainly would love to continue being the king in our little cubicle in the engi-
neering office by solving problems at the press of a button on a computer
(until they invent a remote control for the computers, of course). Well, this
might have been a fantasy yesterday, but it is a reality today. Practically all
engineering offices today are equipped with high-powered computers with
sophisticated software packages, with impressive presentation-style colorful
output in graphical and tabular form (Fig. 5–5). Besides, the results are as
accurate as the analytical results for all practical purposes. The computers
have certainly changed the way engineering is practiced.

The discussions above should not lead you to believe that analytical solu-
tions are unnecessary and that they should be discarded from the engineering
curriculum. On the contrary, insight to the physical phenomena and engineer-
ing wisdom is gained primarily through analysis. The “feel” that engineers
develop during the analysis of simple but fundamental problems serves as
an invaluable tool when interpreting a huge pile of results obtained from a
computer when solving a complex problem. A simple analysis by hand for
a limiting case can be used to check if the results are in the proper range. Also,
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nothing can take the place of getting “ball park” results on a piece of paper
during preliminary discussions. The calculators made the basic arithmetic
operations by hand a thing of the past, but they did not eliminate the need for
instructing grade school children how to add or multiply.

In this chapter, you will learn how to formulate and solve heat transfer
problems numerically using one or more approaches. In your professional life,
you will probably solve the heat transfer problems you come across using a
professional software package, and you are highly unlikely to write your own
programs to solve such problems. (Besides, people will be highly skeptical
of the results obtained using your own program instead of using a well-
established commercial software package that has stood the test of time.) The
insight you will gain in this chapter by formulating and solving some heat
transfer problems will help you better understand the available software pack-
ages and be an informed and responsible user.

5–2 FINITE DIFFERENCE FORMULATION
OF DIFFERENTIAL EQUATIONS

The numerical methods for solving differential equations are based on replac-
ing the differential equations by algebraic equations. In the case of the popu-
lar finite difference method, this is done by replacing the derivatives by
differences. Below we will demonstrate this with both first- and second-order
derivatives. But first we give a motivational example.

Consider a man who deposits his money in the amount of A0 � $100 in a
savings account at an annual interest rate of 18 percent, and let us try to de-
termine the amount of money he will have after one year if interest is com-
pounded continuously (or instantaneously). In the case of simple interest, the
money will earn $18 interest, and the man will have 100 � 100 � 0.18 �
$118.00 in his account after one year. But in the case of compounding, the
interest earned during a compounding period will also earn interest for the
remaining part of the year, and the year-end balance will be greater than $118.
For example, if the money is compounded twice a year, the balance will be
100 � 100 � (0.18/2) � $109 after six months, and 109 � 109 � (0.18/2) �
$118.81 at the end of the year. We could also determine the balance A di-
rectly from

A � A0(1 � i)n � ($100)(1 � 0.09)2 � $118.81 (5-4)

where i is the interest rate for the compounding period and n is the number of
periods. Using the same formula, the year-end balance is determined for
monthly, daily, hourly, minutely, and even secondly compounding, and the re-
sults are given in Table 5–1.

Note that in the case of daily compounding, the year-end balance will be
$119.72, which is $1.72 more than the simple interest case. (So it is no wonder
that the credit card companies usually charge interest compounded daily when
determining the balance.) Also note that compounding at smaller time inter-
vals, even at the end of each second, does not change the result, and we sus-
pect that instantaneous compounding using “differential” time intervals dt will
give the same result. This suspicion is confirmed by obtaining the differential

�
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TABLE 5–1

Year-end balance of a $100 account
earning interest at an annual rate
of 18 percent for various
compounding periods

Number 
Compounding of Year-End 
Period Periods, n Balance

1 year 1 $118.00
6 months 2 118.81
1 month 12 119.56
1 week 52 119.68
1 day 365 119.72
1 hour 8760 119.72
1 minute 525,600 119.72
1 second 31,536,000 119.72
Instantaneous � 119.72
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equation dA/dt � iA for the balance A, whose solution is A � A0 exp(it). Sub-
stitution yields

A � ($100)exp(0.18 � 1) � $119.72

which is identical to the result for daily compounding. Therefore, replacing a
differential time interval dt by a finite time interval of �t � 1 day gave the
same result, which leads us into believing that reasonably accurate results can
be obtained by replacing differential quantities by sufficiently small differ-
ences. Next, we develop the finite difference formulation of heat conduction
problems by replacing the derivatives in the differential equations by differ-
ences. In the following section we will do it using the energy balance method,
which does not require any knowledge of differential equations.

Derivatives are the building blocks of differential equations, and thus we
first give a brief review of derivatives. Consider a function f that depends on
x, as shown in Figure 5–6. The first derivative of f(x) at a point is equivalent
to the slope of a line tangent to the curve at that point and is defined as

� � (5-5)

which is the ratio of the increment �f of the function to the increment �x of the
independent variable as �x → 0. If we don’t take the indicated limit, we will
have the following approximate relation for the derivative:

� (5-6)

This approximate expression of the derivative in terms of differences is the
finite difference form of the first derivative. The equation above can also be
obtained by writing the Taylor series expansion of the function f about the
point x,

f(x � �x) � f(x) � �x � �x2 � · · · (5-7)

and neglecting all the terms in the expansion except the first two. The first
term neglected is proportional to �x2, and thus the error involved in each step
of this approximation is also proportional to �x2. However, the commutative
error involved after M steps in the direction of length L is proportional to �x
since M�x2 � (L/�x)�x2 � L�x. Therefore, the smaller the �x, the smaller
the error, and thus the more accurate the approximation.

Now consider steady one-dimensional heat transfer in a plane wall of thick-
ness L with heat generation. The wall is subdivided into M sections of equal
thickness �x � L/M in the x-direction, separated by planes passing through
M � 1 points 0, 1, 2, . . . , m � 1, m, m � 1, . . . , M called nodes or nodal
points, as shown in Figure 5–7. The x-coordinate of any point m is simply
xm � m�x, and the temperature at that point is simply T(xm) � Tm.

The heat conduction equation involves the second derivatives of tempera-
ture with respect to the space variables, such as d 2T/dx2, and the finite differ-
ence formulation is based on replacing the second derivatives by appropriate
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differences. But we need to start the process with first derivatives. Using
Eq. 5–6, the first derivative of temperature dT/dx at the midpoints m � and
m � of the sections surrounding the node m can be expressed as

� and � (5-8)

Noting that the second derivative is simply the derivative of the first deriva-
tive, the second derivative of temperature at node m can be expressed as

� �

� (5-9)

which is the finite difference representation of the second derivative at a gen-
eral internal node m. Note that the second derivative of temperature at a node
m is expressed in terms of the temperatures at node m and its two neighboring
nodes. Then the differential equation

� � 0 (5-10)

which is the governing equation for steady one-dimensional heat transfer in a
plane wall with heat generation and constant thermal conductivity, can be ex-
pressed in the finite difference form as (Fig. 5–8)

� � 0, m � 1, 2, 3, . . . , M � 1 (5-11)

where g·m is the rate of heat generation per unit volume at node m. If the sur-
face temperatures T0 and TM are specified, the application of this equation to
each of the M � 1 interior nodes results in M � 1 equations for the determi-
nation of M � 1 unknown temperatures at the interior nodes. Solving these
equations simultaneously gives the temperature values at the nodes. If the
temperatures at the outer surfaces are not known, then we need to obtain two
more equations in a similar manner using the specified boundary conditions.
Then the unknown temperatures at M � 1 nodes are determined by solving
the resulting system of M � 1 equations in M � 1 unknowns simultaneously.

Note that the boundary conditions have no effect on the finite difference
formulation of interior nodes of the medium. This is not surprising since the
control volume used in the development of the formulation does not involve
any part of the boundary. You may recall that the boundary conditions had no
effect on the differential equation of heat conduction in the medium either.

The finite difference formulation above can easily be extended to two- or
three-dimensional heat transfer problems by replacing each second derivative
by a difference equation in that direction. For example, the finite difference
formulation for steady two-dimensional heat conduction in a region with
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heat generation and constant thermal conductivity can be expressed in rectan-
gular coordinates as (Fig. 5–9)

� � � 0 (5-12)

for m � 1, 2, 3, . . . , M �1 and n � 1, 2, 3, . . . , N �1 at any interior node
(m, n). Note that a rectangular region that is divided into M equal subregions
in the x-direction and N equal subregions in the y-direction has a total of
(M � 1)(N � 1) nodes, and Eq. 5–12 can be used to obtain the finite differ-
ence equations at (M � 1)(N �1) of these nodes (i.e., all nodes except those
at the boundaries).

The finite difference formulation is given above to demonstrate how differ-
ence equations are obtained from differential equations. However, we will use
the energy balance approach in the following sections to obtain the numerical
formulation because it is more intuitive and can handle boundary conditions
more easily. Besides, the energy balance approach does not require having the
differential equation before the analysis.

5–3 ONE-DIMENSIONAL
STEADY HEAT CONDUCTION

In this section we will develop the finite difference formulation of heat con-
duction in a plane wall using the energy balance approach and discuss how to
solve the resulting equations. The energy balance method is based on sub-
dividing the medium into a sufficient number of volume elements and then
applying an energy balance on each element. This is done by first selecting
the nodal points (or nodes) at which the temperatures are to be determined and
then forming elements (or control volumes) over the nodes by drawing lines
through the midpoints between the nodes. This way, the interior nodes remain
at the middle of the elements, and the properties at the node such as the
temperature and the rate of heat generation represent the average properties of
the element. Sometimes it is convenient to think of temperature as varying
linearly between the nodes, especially when expressing heat conduction be-
tween the elements using Fourier’s law.

To demonstrate the approach, again consider steady one-dimensional heat
transfer in a plane wall of thickness L with heat generation g·(x) and constant
conductivity k. The wall is now subdivided into M equal regions of thickness
�x � L/M in the x-direction, and the divisions between the regions are
selected as the nodes. Therefore, we have M � 1 nodes labeled 0, 1, 2, . . . ,
m �1, m, m � 1, . . . , M, as shown in Figure 5–10. The x-coordinate of any
node m is simply xm � m�x, and the temperature at that point is T(xm) � Tm.
Elements are formed by drawing vertical lines through the midpoints between
the nodes. Note that all interior elements represented by interior nodes are
full-size elements (they have a thickness of �x), whereas the two elements at
the boundaries are half-sized.

To obtain a general difference equation for the interior nodes, consider the
element represented by node m and the two neighboring nodes m � 1 and
m � 1. Assuming the heat conduction to be into the element on all surfaces,
an energy balance on the element can be expressed as

�

g·m, n

k

Tm, n�1 � 2Tm, n � Tm, n�1

�y2

Tm�1, n � 2Tm, n � Tm�1, n

�x2

272
HEAT TRANSFER

y

x

n + 1

m – 1 m m + 1

n

n – 1
∆y

∆y

m, n + 1

m, n m + 1, nm – 1, n

m, n – 1

∆x∆x

FIGURE 5–9
Finite difference mesh for two-
dimensional conduction in
rectangular coordinates.

A general
interior node

Volume
element

of node m

1 2 m – 1 xm m + 1 M

∆x

∆x∆x

L

Plane wall

gm
·

Qcond, left
·

Qcond, right
·

0
0

FIGURE 5–10
The nodal points and volume
elements for the finite difference
formulation of one-dimensional
conduction in a plane wall.

cen58933_ch05.qxd  9/4/2002  11:41 AM  Page 272



� � �

or

Q
·

cond, left � Q
·

cond, right � G
·
element � � 0 (5-13)

since the energy content of a medium (or any part of it) does not change under
steady conditions and thus �Eelement � 0. The rate of heat generation within
the element can be expressed as

G
·
element � g·mVelement � g·m A�x (5-14)

where g·m is the rate of heat generation per unit volume in W/m3 evaluated at
node m and treated as a constant for the entire element, and A is heat transfer
area, which is simply the inner (or outer) surface area of the wall.

Recall that when temperature varies linearly, the steady rate of heat con-
duction across a plane wall of thickness L can be expressed as

Q
·

cond � kA (5-15)

where �T is the temperature change across the wall and the direction of heat
transfer is from the high temperature side to the low temperature. In the case
of a plane wall with heat generation, the variation of temperature is not linear
and thus the relation above is not applicable. However, the variation of tem-
perature between the nodes can be approximated as being linear in the deter-
mination of heat conduction across a thin layer of thickness �x between two
nodes (Fig. 5–11). Obviously the smaller the distance �x between two nodes,
the more accurate is this approximation. (In fact, such approximations are the
reason for classifying the numerical methods as approximate solution meth-
ods. In the limiting case of �x approaching zero, the formulation becomes ex-
act and we obtain a differential equation.) Noting that the direction of heat
transfer on both surfaces of the element is assumed to be toward the node m,
the rate of heat conduction at the left and right surfaces can be expressed as

Q
·

cond, left � kA and Q
·

cond, right � kA (5-16)

Substituting Eqs. 5–14 and 5–16 into Eq. 5–13 gives

kA � kA � g·m A�x � 0 (5-17)

which simplifies to

� � 0, m � 1, 2, 3, . . . , M � 1 (5-18)
g·m
k
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which is identical to the difference equation (Eq. 5–11) obtained earlier.
Again, this equation is applicable to each of the M � 1 interior nodes, and its
application gives M � 1 equations for the determination of temperatures at
M � 1 nodes. The two additional equations needed to solve for the M � 1 un-
known nodal temperatures are obtained by applying the energy balance on the
two elements at the boundaries (unless, of course, the boundary temperatures
are specified).

You are probably thinking that if heat is conducted into the element from
both sides, as assumed in the formulation, the temperature of the medium will
have to rise and thus heat conduction cannot be steady. Perhaps a more realis-
tic approach would be to assume the heat conduction to be into the element on
the left side and out of the element on the right side. If you repeat the formu-
lation using this assumption, you will again obtain the same result since the
heat conduction term on the right side in this case will involve Tm � Tm � 1 in-
stead of Tm � 1 � Tm, which is subtracted instead of being added. Therefore,
the assumed direction of heat conduction at the surfaces of the volume ele-
ments has no effect on the formulation, as shown in Figure 5–12. (Besides, the
actual direction of heat transfer is usually not known.) However, it is conve-
nient to assume heat conduction to be into the element at all surfaces and not
worry about the sign of the conduction terms. Then all temperature differences
in conduction relations are expressed as the temperature of the neighboring
node minus the temperature of the node under consideration, and all conduc-
tion terms are added.

Boundary Conditions
Above we have developed a general relation for obtaining the finite difference
equation for each interior node of a plane wall. This relation is not applicable
to the nodes on the boundaries, however, since it requires the presence of
nodes on both sides of the node under consideration, and a boundary node
does not have a neighboring node on at least one side. Therefore, we need to
obtain the finite difference equations of boundary nodes separately. This is
best done by applying an energy balance on the volume elements of boundary
nodes.

Boundary conditions most commonly encountered in practice are the spec-
ified temperature, specified heat flux, convection, and radiation boundary
conditions, and here we develop the finite difference formulations for them
for the case of steady one-dimensional heat conduction in a plane wall of
thickness L as an example. The node number at the left surface at x � 0 is 0,
and at the right surface at x � L it is M. Note that the width of the volume el-
ement for either boundary node is �x/2.

The specified temperature boundary condition is the simplest boundary
condition to deal with. For one-dimensional heat transfer through a plane wall
of thickness L, the specified temperature boundary conditions on both the left
and right surfaces can be expressed as (Fig. 5–13)

T(0) � T0 � Specified value

T(L) � TM � Specified value (5-19)

where T0 and Tm are the specified temperatures at surfaces at x � 0 and x � L,
respectively. Therefore, the specified temperature boundary conditions are
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FIGURE 5–12
The assumed direction of heat transfer
at surfaces of a volume element has
no effect on the finite difference
formulation.
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incorporated by simply assigning the given surface temperatures to the bound-
ary nodes. We do not need to write an energy balance in this case unless we
decide to determine the rate of heat transfer into or out of the medium after the
temperatures at the interior nodes are determined.

When other boundary conditions such as the specified heat flux, convection,
radiation, or combined convection and radiation conditions are specified at a
boundary, the finite difference equation for the node at that boundary is ob-
tained by writing an energy balance on the volume element at that boundary.
The energy balance is again expressed as

Q
·

� G
·
element � 0 (5-20)

for heat transfer under steady conditions. Again we assume all heat transfer to
be into the volume element from all surfaces for convenience in formulation,
except for specified heat flux since its direction is already specified. Specified
heat flux is taken to be a positive quantity if into the medium and a negative
quantity if out of the medium. Then the finite difference formulation at the
node m � 0 (at the left boundary where x � 0) of a plane wall of thickness L
during steady one-dimensional heat conduction can be expressed as (Fig.
5–14)

Q
·

left surface � kA � g·0(A�x/2) � 0 (5-21)

where A�x/2 is the volume of the volume element (note that the boundary ele-
ment has half thickness), g·0 is the rate of heat generation per unit volume (in
W/m3) at x � 0, and A is the heat transfer area, which is constant for a plane
wall. Note that we have �x in the denominator of the second term instead of
�x/2. This is because the ratio in that term involves the temperature difference
between nodes 0 and 1, and thus we must use the distance between those two
nodes, which is �x.

The finite difference form of various boundary conditions can be obtained
from Eq. 5–21 by replacing Q

·
left surface by a suitable expression. Next this is

done for various boundary conditions at the left boundary.

1. Specified Heat Flux Boundary Condition

q·0A � kA � g·0(A�x/2) � 0 (5-22)

Special case: Insulated Boundary (q·0 � 0)

kA � g·0(A�x/2) � 0 (5-23)

2. Convection Boundary Condition

hA(T� � T0) � kA � g·0(A�x/2) � 0 (5-24)
T1 � T0

�x

T1 � T0

�x

T1 � T0

�x

T1 � T0

�x

�
all sides
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FIGURE 5–13
Finite difference formulation of
specified temperature boundary

conditions on both surfaces
of a plane wall.
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3. Radiation Boundary Condition

	
A( ) � kA � g·0(A�x/2) � 0 (5-25)

4. Combined Convection and Radiation Boundary Condition
(Fig. 5–15)

hA(T� � T0) � 	
A( ) � kA � g·0(A�x/2) � 0 (5-26)

or

hcombined A(T� � T0) � kA � g·0(A�x/2) � 0 (5-27)

5. Combined Convection, Radiation, and Heat Flux Boundary
Condition

q·0A � hA(T� � T0) � 	
A( ) � kA � g·0(A�x/2) � 0 (5-28)

6. Interface Boundary Condition Two different solid media A and B
are assumed to be in perfect contact, and thus at the same temperature
at the interface at node m (Fig. 5–16). Subscripts A and B indicate
properties of media A and B, respectively.

kAA � kBA � g·A, m(A�x/2) � g·B, m(A�x/2) � 0 (5-29)

In these relations, q·0 is the specified heat flux in W/m2, h is the convection
coefficient, hcombined is the combined convection and radiation coefficient, T� is
the temperature of the surrounding medium, Tsurr is the temperature of the
surrounding surfaces, 	 is the emissivity of the surface, and 
 is the Stefan–
Boltzman constant. The relations above can also be used for node M on the
right boundary by replacing the subscript “0” by “M” and the subscript “1” by
“M � 1”.

Note that absolute temperatures must be used in radiation heat transfer
calculations, and all temperatures should be expressed in K or R when a
boundary condition involves radiation to avoid mistakes. We usually try to
avoid the radiation boundary condition even in numerical solutions since it
causes the finite difference equations to be nonlinear, which are more difficult
to solve.

Treating Insulated Boundary Nodes as Interior Nodes:
The Mirror Image Concept
One way of obtaining the finite difference formulation of a node on an insu-
lated boundary is to treat insulation as “zero” heat flux and to write an energy
balance, as done in Eq. 5–23. Another and more practical way is to treat the
node on an insulated boundary as an interior node. Conceptually this is done

Tm�1 � Tm

�x

Tm�1 � Tm

�x

T1 � T0

�x
T 4

surr � T 4
0

T1 � T0

�x

T1 � T0

�x
T 4

surr � T 4
0

T1 � T0

�x
T 4

surr � T 4
0
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Schematic for the finite difference
formulation of combined convection
and radiation on the left boundary
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by replacing the insulation on the boundary by a mirror and considering the
reflection of the medium as its extension (Fig. 5–17). This way the node next
to the boundary node appears on both sides of the boundary node because of
symmetry, converting it into an interior node. Then using the general formula
(Eq. 5–18) for an interior node, which involves the sum of the temperatures of
the adjoining nodes minus twice the node temperature, the finite difference
formulation of a node m � 0 on an insulated boundary of a plane wall can be
expressed as

� � 0 → � � 0 (5-30)

which is equivalent to Eq. 5–23 obtained by the energy balance approach.
The mirror image approach can also be used for problems that possess ther-

mal symmetry by replacing the plane of symmetry by a mirror. Alternately, we
can replace the plane of symmetry by insulation and consider only half of the
medium in the solution. The solution in the other half of the medium is sim-
ply the mirror image of the solution obtained.

g·0
k

T1 � 2T0 � T1

�x2

g·m
k

Tm�1 � 2Tm � Tm�1

�x2
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FIGURE 5–17
A node on an insulated boundary

can be treated as an interior node by
replacing the insulation by a mirror.

EXAMPLE 5–1 Steady Heat Conduction in a Large Uranium Plate

Consider a large uranium plate of thickness L � 4 cm and thermal conductivity
k � 28 W/m · °C in which heat is generated uniformly at a constant rate of
g· � 5 � 106 W/m3. One side of the plate is maintained at 0°C by iced water
while the other side is subjected to convection to an environment at T� � 30°C
with a heat transfer coefficient of h � 45 W/m2 · °C, as shown in Figure 5–18.
Considering a total of three equally spaced nodes in the medium, two at the
boundaries and one at the middle, estimate the exposed surface temperature of
the plate under steady conditions using the finite difference approach.

SOLUTION A uranium plate is subjected to specified temperature on one side
and convection on the other. The unknown surface temperature of the plate is
to be determined numerically using three equally spaced nodes.
Assumptions 1 Heat transfer through the wall is steady since there is no in-
dication of any change with time. 2 Heat transfer is one-dimensional since
the plate is large relative to its thickness. 3 Thermal conductivity is constant. 
4 Radiation heat transfer is negligible.
Properties The thermal conductivity is given to be k � 28 W/m · °C.
Analysis The number of nodes is specified to be M � 3, and they are chosen
to be at the two surfaces of the plate and the midpoint, as shown in the figure.
Then the nodal spacing �x becomes

�x � � � 0.02 m

We number the nodes 0, 1, and 2. The temperature at node 0 is given to be
T0 � 0°C, and the temperatures at nodes 1 and 2 are to be determined. This
problem involves only two unknown nodal temperatures, and thus we need to
have only two equations to determine them uniquely. These equations are ob-
tained by applying the finite difference method to nodes 1 and 2.

0.04 m
3 � 1

L
M � 1

0
0

1 2 x
L

Uranium
plate

k = 28 W/m·°C

g = 5 × 106 W/m3

h

T�

0°C

·

FIGURE 5–18
Schematic for Example 5–1.
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Node 1 is an interior node, and the finite difference formulation at that node
is obtained directly from Eq. 5–18 by setting m � 1:

� � 0 → � � 0 → 2T1 � T2 �

(1)

Node 2 is a boundary node subjected to convection, and the finite difference
formulation at that node is obtained by writing an energy balance on the volume
element of thickness �x/2 at that boundary by assuming heat transfer to be into
the medium at all sides:

hA(T� � T2) � kA � g·2(A�x/2) � 0

Canceling the heat transfer area A and rearranging give

T1 � T2 � � T� � (2)

Equations (1) and (2) form a system of two equations in two unknowns T1 and
T2. Substituting the given quantities and simplifying gives

2T1 � T2 � 71.43 (in °C)

T1 � 1.032T2 � �36.68 (in °C)

This is a system of two algebraic equations in two unknowns and can be solved
easily by the elimination method. Solving the first equation for T1 and substi-
tuting into the second equation result in an equation in T2 whose solution is

T2 � 136.1°C

This is the temperature of the surface exposed to convection, which is the
desired result. Substitution of this result into the first equation gives T1 �
103.8°C, which is the temperature at the middle of the plate.

Discussion The purpose of this example is to demonstrate the use of the finite
difference method with minimal calculations, and the accuracy of the result
was not a major concern. But you might still be wondering how accurate the re-
sult obtained above is. After all, we used a mesh of only three nodes for the
entire plate, which seems to be rather crude. This problem can be solved ana-
lytically as described in Chapter 2, and the analytical (exact) solution can be
shown to be

T(x) � x �

Substituting the given quantities, the temperature of the exposed surface of the
plate at x � L � 0.04 m is determined to be 136.0°C, which is almost identi-
cal to the result obtained here with the approximate finite difference method
(Fig. 5–19). Therefore, highly accurate results can be obtained with numerical
methods by using a limited number of nodes.

g·x2

2k
0.5g·hL2/k � g·L � T�h

hL � k

g·2�x2

2k
h�x
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h�x

k �

T1 � T2

�x

g·1�x2

k
g·1
k

0 � 2T1 � T2

�x2

g·1
k

T0 � 2T1 � T2

�x2

h

T�

0 1 2 x
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Finite difference solution:

T2 = 136.1°C

Exact solution:

T2 = 136.0°C

2 cm

FIGURE 5–19
Despite being approximate in nature,
highly accurate results can be
obtained by numerical methods.
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EXAMPLE 5–2 Heat Transfer from Triangular Fins

Consider an aluminum alloy fin (k � 180 W/m · °C) of triangular cross section
with length L � 5 cm, base thickness b � 1 cm, and very large width w in the
direction normal to the plane of paper, as shown in Figure 5–20. The base of
the fin is maintained at a temperature of T0 � 200°C. The fin is losing heat
to the surrounding medium at T� � 25°C with a heat transfer coefficient of
h � 15 W/m2 · °C. Using the finite difference method with six equally spaced
nodes along the fin in the x-direction, determine (a) the temperatures at the
nodes, (b) the rate of heat transfer from the fin for w � 1 m, and (c) the fin
efficiency.

SOLUTION A long triangular fin attached to a surface is considered. The nodal
temperatures, the rate of heat transfer, and the fin efficiency are to be deter-
mined numerically using six equally spaced nodes.

Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 The temperature along the fin varies in the x direction only.
3 Thermal conductivity is constant. 4 Radiation heat transfer is negligible.

Properties The thermal conductivity is given to be k � 180 W/m · °C.

Analysis (a) The number of nodes in the fin is specified to be M � 6, and their
location is as shown in the figure. Then the nodal spacing �x becomes

�x � � � 0.01 m

The temperature at node 0 is given to be T0 � 200°C, and the temperatures at
the remaining five nodes are to be determined. Therefore, we need to have five
equations to determine them uniquely. Nodes 1, 2, 3, and 4 are interior nodes,
and the finite difference formulation for a general interior node m is obtained
by applying an energy balance on the volume element of this node. Noting that
heat transfer is steady and there is no heat generation in the fin and assuming
heat transfer to be into the medium at all sides, the energy balance can be ex-
pressed as

Q
·

� 0 → kAleft � kAright � hAconv(T� � Tm) � 0

Note that heat transfer areas are different for each node in this case, and using
geometrical relations, they can be expressed as

Aleft � (Height � Width)@m � � 2w[L � (m � 1/2)�x]tan �

Aright � (Height � Width)@m � � 2w[L � (m � 1/2)�x]tan �

Aconv � 2 � Length � Width � 2w(�x/cos �)

Substituting, 

2kw[L � (m � )�x]tan �

� 2kw[L � (m � )�x]tan � � h (T� � Tm) � 0
2w�x
cos �

Tm�1 � Tm

�x
1
2

Tm�1 � Tm

�x
1
2

1
2

1
2

Tm�1 � Tm

�x

Tm�1 � Tm

�x�
all sides

0.05 m
6 � 1

L
M � 1

∆x

θ
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m – 1 m m + 1

L – (m –    )∆x1–
2

θ
∆x——–

cos   

[L – (m +    )∆x]tan1–
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FIGURE 5–20
Schematic for Example 5–2 and the

volume element of a general
interior node of the fin.
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Dividing each term by 2kwL tan �/�x gives

(Tm � 1 � Tm) � (Tm � 1 � Tm)

� (T� � Tm) � 0

Note that

tan � � � 0.1 → � � tan�10.1 � 5.71°

Also, sin 5.71° � 0.0995. Then the substitution of known quantities gives

(5.5 � m)Tm � 1 � (10.00838 � 2m)Tm � (4.5 � m)Tm � 1 � �0.209

Now substituting 1, 2, 3, and 4 for m results in these finite difference equa-
tions for the interior nodes:

m � 1: �8.00838T1 � 3.5T2 � �900.209 (1)

m � 2: 3.5T1 � 6.00838T2 � 2.5T3 � �0.209 (2)

m � 3: 2.5T2 � 4.00838T3 � 1.5T4 � �0.209 (3)

m � 4: 1.5T3 � 2.00838T4 � 0.5T5 � �0.209 (4)

The finite difference equation for the boundary node 5 is obtained by writing an
energy balance on the volume element of length �x/2 at that boundary, again by
assuming heat transfer to be into the medium at all sides (Fig. 5–21):

kAleft � hAconv (T� � T5) � 0

where

Aleft � 2w tan � and Aconv � 2w

Canceling w in all terms and substituting the known quantities gives

T4 � 1.00838T5 � �0.209 (5)

Equations (1) through (5) form a linear system of five algebraic equations in five
unknowns. Solving them simultaneously using an equation solver gives

T1 � 198.6°C, T2 � 197.1°C, T3 � 195.7°C,

T4 � 194.3°C, T5 � 192.9°C

which is the desired solution for the nodal temperatures.

(b) The total rate of heat transfer from the fin is simply the sum of the heat
transfer from each volume element to the ambient, and for w � 1 m it is deter-
mined from

�x/2
cos �

�x
2

T4 � T5

�x

b/2
L

�
0.5 cm
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h(�x)2

kL sin �

�1 � (m � 1
2
) 

�x
L ��1 � (m � 1

2
) 

�x
L �

4 5
θ

∆x—–
2

∆x—–
2

tan θ∆x—–
2

∆x /2—–—
cos   θ

FIGURE 5–21
Schematic of the volume element of
node 5 at the tip of a triangular fin.
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The finite difference formulation of steady heat conduction problems usu-
ally results in a system of N algebraic equations in N unknown nodal temper-
atures that need to be solved simultaneously. When N is small (such as 2 or 3),
we can use the elementary elimination method to eliminate all unknowns ex-
cept one and then solve for that unknown (see Example 5–1). The other un-
knowns are then determined by back substitution. When N is large, which is
usually the case, the elimination method is not practical and we need to use a
more systematic approach that can be adapted to computers.

There are numerous systematic approaches available in the literature, and
they are broadly classified as direct and iterative methods. The direct meth-
ods are based on a fixed number of well-defined steps that result in the solu-
tion in a systematic manner. The iterative methods, on the other hand, are
based on an initial guess for the solution that is refined by iteration until a
specified convergence criterion is satisfied (Fig. 5–22). The direct methods
usually require a large amount of computer memory and computation time,
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Q
·

fin � Q
·

element, m � hAconv, m(Tm � T�)

Noting that the heat transfer surface area is w�x/cos � for the boundary nodes
0 and 5, and twice as large for the interior nodes 1, 2, 3, and 4, we have

Q
·

fin � h [(T0 � T�) � 2(T1 � T�) � 2(T2 � T�) � 2(T3 � T�)

� 2(T4 � T�) � (T5 � T�)]

� h [T0 � 2(T1 � T2 � T3 � T4) � T5 � 10T�]

� (15 W/m2 · °C) [200 � 2 � 785.7 � 192.9 � 10 � 25]

� 258.4 W

(c) If the entire fin were at the base temperature of T0 � 200°C, the total rate
of heat transfer from the fin for w � 1 m would be

Q
·

max � hAfin, total (T0 � T�) � h(2wL/cos �)(T0 � T�)

� (15 W/m2 · °C)[2(1 m)(0.05 m)/cos5.71°](200 � 25)°C

� 263.8 W

Then the fin efficiency is determined from

�fin � � � 0.98

which is less than 1, as expected. We could also determine the fin efficiency in
this case from the proper fin efficiency curve in Chapter 3, which is based on
the analytical solution. We would read 0.98 for the fin efficiency, which is iden-
tical to the value determined above numerically.

258.4 W
263.8 W

Q·
fin

Q·
max

(1 m)(0.01 m)
cos 5.71°

w�x
cos �

w�x
cos �

�
5

m�0
�

5

m�0

Direct methods:
Solve in a systematic manner following a
series of well-defined steps.

Iterative methods:
Start with an initial guess for the solution,
and iterate until solution converges.

FIGURE 5–22
Two general categories of solution

methods for solving systems
of algebraic equations.
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and they are more suitable for systems with a relatively small number of equa-
tions. The computer memory requirements for iterative methods are minimal,
and thus they are usually preferred for large systems. The convergence of it-
erative methods to the desired solution, however, may pose a problem.

5–4 TWO-DIMENSIONAL
STEADY HEAT CONDUCTION

In Section 5–3 we considered one-dimensional heat conduction and assumed
heat conduction in other directions to be negligible. Many heat transfer prob-
lems encountered in practice can be approximated as being one-dimensional,
but this is not always the case. Sometimes we need to consider heat transfer in
other directions as well when the variation of temperature in other directions
is significant. In this section we will consider the numerical formulation and
solution of two-dimensional steady heat conduction in rectangular coordinates
using the finite difference method. The approach presented below can be ex-
tended to three-dimensional cases.

Consider a rectangular region in which heat conduction is significant in the
x- and y-directions. Now divide the x-y plane of the region into a rectangular
mesh of nodal points spaced �x and �y apart in the x- and y-directions,
respectively, as shown in Figure 5–23, and consider a unit depth of �z � 1
in the z-direction. Our goal is to determine the temperatures at the nodes,
and it is convenient to number the nodes and describe their position by
the numbers instead of actual coordinates. A logical numbering scheme for
two-dimensional problems is the double subscript notation (m, n) where
m � 0, 1, 2, . . . , M is the node count in the x-direction and n � 0, 1, 2, . . . , N
is the node count in the y-direction. The coordinates of the node (m, n) are
simply x � m�x and y � n�y, and the temperature at the node (m, n) is
denoted by Tm, n.

Now consider a volume element of size �x � �y � 1 centered about a gen-
eral interior node (m, n) in a region in which heat is generated at a rate of g· and
the thermal conductivity k is constant, as shown in Figure 5–24. Again
assuming the direction of heat conduction to be toward the node under
consideration at all surfaces, the energy balance on the volume element can be
expressed as

� �

or

Q
·

cond, left � Q
·

cond, top � Q
·

cond, right � Q
·

cond, bottom� G
·
element � � 0 (5-31)

for the steady case. Again assuming the temperatures between the adja-
cent nodes to vary linearly and noting that the heat transfer area is
Ax � �y � 1 � �y in the x-direction and Ay � �x � 1 � �x in the y-direction,
the energy balance relation above becomes

�Eelement

�t

�Rate of change of
the energy content

of the element �� Rate of heat
generation inside

the element ��Rate of heat conduction
at the left, top, right,
and bottom surfaces �

�
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The nodal network for the finite
difference formulation of two-
dimensional conduction in
rectangular coordinates.
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dimensional conduction in
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k�y � k�x � k�y 

� k�x � g·m, n �x �y � 0 (5-32)

Dividing each term by �x � �y and simplifying gives

� � � 0 (5-33)

for m � 1, 2, 3, . . . , M � 1 and n � 1, 2, 3, . . . , N � 1. This equation is iden-
tical to Eq. 5–12 obtained earlier by replacing the derivatives in the differen-
tial equation by differences for an interior node (m, n). Again a rectangular
region M equally spaced nodes in the x-direction and N equally spaced nodes
in the y-direction has a total of (M � 1)(N � 1) nodes, and Eq. 5–33 can be
used to obtain the finite difference equations at all interior nodes.

In finite difference analysis, usually a square mesh is used for sim-
plicity (except when the magnitudes of temperature gradients in the x- and
y-directions are very different), and thus �x and �y are taken to be the same.
Then �x � �y � l, and the relation above simplifies to

Tm � 1, n � Tm � 1, n � Tm, n � 1 � Tm, n � 1 � 4Tm, n � � 0 (5-34)

That is, the finite difference formulation of an interior node is obtained by
adding the temperatures of the four nearest neighbors of the node, subtracting
four times the temperature of the node itself, and adding the heat generation
term. It can also be expressed in this form, which is easy to remember:

Tleft � Ttop � Tright � Tbottom � 4Tnode � � 0 (5-35)

When there is no heat generation in the medium, the finite difference equa-
tion for an interior node further simplifies to Tnode � (Tleft � Ttop � Tright �
Tbottom)/4, which has the interesting interpretation that the temperature of each
interior node is the arithmetic average of the temperatures of the four neigh-
boring nodes. This statement is also true for the three-dimensional problems
except that the interior nodes in that case will have six neighboring nodes in-
stead of four.

Boundary Nodes
The development of finite difference formulation of boundary nodes in two-
(or three-) dimensional problems is similar to the development in the one-
dimensional case discussed earlier. Again, the region is partitioned between
the nodes by forming volume elements around the nodes, and an energy bal-
ance is written for each boundary node. Various boundary conditions can be
handled as discussed for a plane wall, except that the volume elements
in the two-dimensional case involve heat transfer in the y-direction as well as
the x-direction. Insulated surfaces can still be viewed as “mirrors, ” and the

g· nodel 2

k

g·m, nl 2

k

g·m, n

k

Tm, n�1 � 2Tm, n � Tm, n�1

�y2

Tm�1, n � 2Tm, n � Tm�1, n

�x2

Tm, n�1 � Tm, n

�y

Tm�1, n � Tm, n

�x

Tm, n�1 � Tm, n

�y

Tm�1, n � Tm, n

�x
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mirror image concept can be used to treat nodes on insulated boundaries as in-
terior nodes.

For heat transfer under steady conditions, the basic equation to keep in mind
when writing an energy balance on a volume element is (Fig. 5–25)

Q
·

� g·Velement � 0 (5-36)

whether the problem is one-, two-, or three-dimensional. Again we assume,
for convenience in formulation, all heat transfer to be into the volume ele-
ment from all surfaces except for specified heat flux, whose direction is al-
ready specified. This is demonstrated in Example 5–3 for various boundary
conditions.

�
all sides
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FIGURE 5–25
The finite difference formulation of
a boundary node is obtained by
writing an energy balance
on its volume element.

EXAMPLE 5–3 Steady Two-Dimensional Heat Conduction
in L-Bars

Consider steady heat transfer in an L-shaped solid body whose cross section is
given in Figure 5–26. Heat transfer in the direction normal to the plane of the
paper is negligible, and thus heat transfer in the body is two-dimensional. The
thermal conductivity of the body is k � 15 W/m · °C, and heat is generated in
the body at a rate of g· � 2 � 106 W/m3. The left surface of the body is insu-
lated, and the bottom surface is maintained at a uniform temperature of 90°C.
The entire top surface is subjected to convection to ambient air at T� � 25°C
with a convection coefficient of h � 80 W/m2 · °C, and the right surface is sub-
jected to heat flux at a uniform rate of q·R � 5000 W/m2. The nodal network of
the problem consists of 15 equally spaced nodes with �x � �y � 1.2 cm, as
shown in the figure. Five of the nodes are at the bottom surface, and thus their
temperatures are known. Obtain the finite difference equations at the remain-
ing nine nodes and determine the nodal temperatures by solving them.

SOLUTION Heat transfer in a long L-shaped solid bar with specified boundary
conditions is considered. The nine unknown nodal temperatures are to be de-
termined with the finite difference method.
Assumptions 1 Heat transfer is steady and two-dimensional, as stated. 2 Ther-
mal conductivity is constant. 3 Heat generation is uniform. 4 Radiation heat
transfer is negligible.
Properties The thermal conductivity is given to be k � 15 W/m · °C.
Analysis We observe that all nodes are boundary nodes except node 5, which
is an interior node. Therefore, we will have to rely on energy balances to obtain
the finite difference equations. But first we form the volume elements by parti-
tioning the region among the nodes equitably by drawing dashed lines between
the nodes. If we consider the volume element represented by an interior node
to be full size (i.e., �x � �y � 1), then the element represented by a regular
boundary node such as node 2 becomes half size (i.e., �x � �y/2 � 1), and
a corner node such as node 1 is quarter size (i.e., �x/2 � �y/2 � 1). Keeping
Eq. 5–36 in mind for the energy balance, the finite difference equations for
each of the nine nodes are obtained as follows:

(a) Node 1. The volume element of this corner node is insulated on the left and
subjected to convection at the top and to conduction at the right and bottom
surfaces. An energy balance on this element gives [Fig. 5–27a]

12 13 14 151110

6 7 8 954

321
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∆x ∆x ∆x ∆x ∆x
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qR
·

∆x = ∆y = l

Convection
h, T�

FIGURE 5–26
Schematic for Example 5–3 and
the nodal network (the boundaries
of volume elements of the nodes are
indicated by dashed lines).

h, T�

1

4

2

(a) Node 1

h, T�

21

5

3

(b) Node 2

FIGURE 5–27
Schematics for energy balances on the
volume elements of nodes 1 and 2.

cen58933_ch05.qxd  9/4/2002  11:41 AM  Page 284



CHAPTER 5
285

0 � h (T� � T1) � k � k � g·1 � 0

Taking �x � �y � l, it simplifies to

– T1 � T2 � T4 � � T� �

(b) Node 2. The volume element of this boundary node is subjected to con-
vection at the top and to conduction at the right, bottom, and left surfaces. An
energy balance on this element gives [Fig. 5–27b]

h�x(T� � T2) � k � k�x � k � g·2�x � 0

Taking �x � �y � l, it simplifies to

T1 � T2 � T3 � 2T5 � � T� �

(c) Node 3. The volume element of this corner node is subjected to convection
at the top and right surfaces and to conduction at the bottom and left surfaces.
An energy balance on this element gives [Fig. 5–28a]

h (T� � T3) � k � k � g·3 � 0

Taking �x � �y � l, it simplifies to

T2 � T3 � T6 � � T� �

(d ) Node 4. This node is on the insulated boundary and can be treated as an
interior node by replacing the insulation by a mirror. This puts a reflected image
of node 5 to the left of node 4. Noting that �x � �y � l, the general interior
node relation for the steady two-dimensional case (Eq. 5–35) gives [Fig. 5–28b]

T5 � T1 � T5 � T10 � 4T4 � � 0

or, noting that T10 � 90° C, 

T1 � 4T4 � 2T5 � �90 �

(e) Node 5. This is an interior node, and noting that �x � �y � l, the finite
difference formulation of this node is obtained directly from Eq. 5–35 to be
[Fig. 5–29a]
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FIGURE 5–28
Schematics for energy balances on the

volume elements of nodes 3 and 4.
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Schematics for energy balances on the

volume elements of nodes 5 and 6.

cen58933_ch05.qxd  9/4/2002  11:41 AM  Page 285



286
HEAT TRANSFER

or, noting that T11 � 90°C, 

T2 � T4 � 4T5 � T6 � �90 �

(f ) Node 6. The volume element of this inner corner node is subjected to con-
vection at the L-shaped exposed surface and to conduction at other surfaces.
An energy balance on this element gives [Fig. 5–29b]

h (T� � T6) � k � k�x

� k�y � k � g·6 � 0

Taking �x � �y � l and noting that T12 � 90°C, it simplifies to

T3 � 2T5 � T6 � T7 � �180 � T� �

(g) Node 7. The volume element of this boundary node is subjected to convec-
tion at the top and to conduction at the right, bottom, and left surfaces. An en-
ergy balance on this element gives [Fig. 5–30a]

h�x(T� � T7) � k � k�x

� k � g·7�x � 0

Taking �x � �y � l and noting that T13 � 90°C, it simplifies to

T6 � T7 � T8 � �180 � T� �

(h) Node 8. This node is identical to Node 7, and the finite difference formu-
lation of this node can be obtained from that of Node 7 by shifting the node
numbers by 1 (i.e., replacing subscript m by m � 1). It gives

T7 � T8 � T9 � �180 � T� �

(i ) Node 9. The volume element of this corner node is subjected to convection
at the top surface, to heat flux at the right surface, and to conduction at the
bottom and left surfaces. An energy balance on this element gives [Fig. 5–30b]

h (T� � T9) � q·R � k � k � g·9 � 0

Taking �x � �y � l and noting that T15 � 90°C, it simplifies to
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FIGURE 5–30
Schematics for energy balances on the
volume elements of nodes 7 and 9.
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Irregular Boundaries
In problems with simple geometries, we can fill the entire region using simple
volume elements such as strips for a plane wall and rectangular elements for
two-dimensional conduction in a rectangular region. We can also use cylin-
drical or spherical shell elements to cover the cylindrical and spherical bodies
entirely. However, many geometries encountered in practice such as turbine
blades or engine blocks do not have simple shapes, and it is difficult to fill
such geometries having irregular boundaries with simple volume elements.
A practical way of dealing with such geometries is to replace the irregular
geometry by a series of simple volume elements, as shown in Figure 5–31.
This simple approach is often satisfactory for practical purposes, especially
when the nodes are closely spaced near the boundary. More sophisticated ap-
proaches are available for handling irregular boundaries, and they are com-
monly incorporated into the commercial software packages.

CHAPTER 5
287

This completes the development of finite difference formulation for this prob-
lem. Substituting the given quantities, the system of nine equations for the
determination of nine unknown nodal temperatures becomes

–2.064T1 � T2 � T4 � �11.2

T1 � 4.128T2 � T3 � 2T5 � �22.4

T2 � 2.128T3 � T6 � �12.8

T1 � 4T4 � 2T5 � �109.2

T2 � T4 � 4T5 � T6 � �109.2

T3 � 2T5 � 6.128T6 � T7 � �212.0

T6 � 4.128T7 � T8 � �202.4

T7 � 4.128T8 � T9 � �202.4

T8 � 2.064T9 � �105.2

which is a system of nine algebraic equations with nine unknowns. Using an
equation solver, its solution is determined to be

T1 � 112.1°C T2 � 110.8°C T3 � 106.6°C

T4 � 109.4°C T5 � 108.1°C T6 � 103.2°C

T7 � 97.3°C T8 � 96.3°C T9 � 97.6°C

Note that the temperature is the highest at node 1 and the lowest at node 8.
This is consistent with our expectations since node 1 is the farthest away from
the bottom surface, which is maintained at 90°C and has one side insulated,
and node 8 has the largest exposed area relative to its volume while being close
to the surface at 90°C.

Actual boundary

Approximation

FIGURE 5–31
Approximating an irregular

boundary with a rectangular mesh.

EXAMPLE 5–4 Heat Loss through Chimneys

Hot combustion gases of a furnace are flowing through a square chimney made
of concrete (k � 1.4 W/m · °C). The flow section of the chimney is 20 cm �
20 cm, and the thickness of the wall is 20 cm. The average temperature of the
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hot gases in the chimney is Ti � 300°C, and the average convection heat trans-
fer coefficient inside the chimney is hi � 70 W/m2 · °C. The chimney is losing
heat from its outer surface to the ambient air at To � 20°C by convection with
a heat transfer coefficient of ho � 21 W/m2 · °C and to the sky by radiation. The
emissivity of the outer surface of the wall is 	 � 0.9, and the effective sky tem-
perature is estimated to be 260 K. Using the finite difference method with
�x � �y � 10 cm and taking full advantage of symmetry, determine the
temperatures at the nodal points of a cross section and the rate of heat loss for
a 1-m-long section of the chimney.

SOLUTION Heat transfer through a square chimney is considered. The nodal
temperatures and the rate of heat loss per unit length are to be determined with
the finite difference method.

Assumptions 1 Heat transfer is steady since there is no indication of change
with time. 2 Heat transfer through the chimney is two-dimensional since the
height of the chimney is large relative to its cross section, and thus heat con-
duction through the chimney in the axial direction is negligible. It is tempting
to simplify the problem further by considering heat transfer in each wall to be
one-dimensional, which would be the case if the walls were thin and thus the
corner effects were negligible. This assumption cannot be justified in this case
since the walls are very thick and the corner sections constitute a considerable
portion of the chimney structure. 3 Thermal conductivity is constant.

Properties The properties of chimney are given to be k � 1.4 W/m · °C and
	 � 0.9.

Analysis The cross section of the chimney is given in Figure 5–32. The most
striking aspect of this problem is the apparent symmetry about the horizontal
and vertical lines passing through the midpoint of the chimney as well as the
diagonal axes, as indicated on the figure. Therefore, we need to consider only
one-eighth of the geometry in the solution whose nodal network consists of nine
equally spaced nodes.

No heat can cross a symmetry line, and thus symmetry lines can be treated
as insulated surfaces and thus “mirrors” in the finite difference formulation.
Then the nodes in the middle of the symmetry lines can be treated as interior
nodes by using mirror images. Six of the nodes are boundary nodes, so we will
have to write energy balances to obtain their finite difference formulations. First
we partition the region among the nodes equitably by drawing dashed lines be-
tween the nodes through the middle. Then the region around a node surrounded
by the boundary or the dashed lines represents the volume element of the node.
Considering a unit depth and using the energy balance approach for the bound-
ary nodes (again assuming all heat transfer into the volume element for conve-
nience) and the formula for the interior nodes, the finite difference equations
for the nine nodes are determined as follows:

(a) Node 1. On the inner boundary, subjected to convection, Figure 5–33a

0 � hi (Ti � T1) � k � k � 0 � 0

Taking �x � �y � l, it simplifies to

– T1 � T2 � T3 � � Ti

hi l
k�2 �

hi l
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2
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FIGURE 5–32
Schematic of the chimney discussed in
Example 5–4 and the nodal network
for a representative section.
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FIGURE 5–33
Schematics for energy balances on the
volume elements of nodes 1 and 2.
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(b) Node 2. On the inner boundary, subjected to convection, Figure 5–33b

k � hi (Ti � T2) � 0 � k�x � 0

Taking �x � �y � l, it simplifies to

T1 � T2 � 2T4 � � Ti

(c) Nodes 3, 4, and 5. (Interior nodes, Fig. 5–34)

Node 3: T4 � T1 � T4 � T6 � 4T3 � 0

Node 4: T3 � T2 � T5 � T7 � 4T4 � 0

Node 5: T4 � T4 � T8 � T8 � 4T5 � 0

(d ) Node 6. (On the outer boundary, subjected to convection and radiation)

0 � k � k

� ho (To � T6) � 	
 ( ) � 0

Taking �x � �y � l, it simplifies to

T2 � T3 � T6 � � To � ( )

(e) Node 7. (On the outer boundary, subjected to convection and radiation,
Fig. 5–35)

k � k�x � k

� ho�x(To � T7) � 	
�x( ) � 0

Taking �x � �y � l, it simplifies to

2T4 � T6 � T7 � T8 � � To � ( )

(f ) Node 8. Same as Node 7, except shift the node numbers up by 1 (replace
4 by 5, 6 by 7, 7 by 8, and 8 by 9 in the last relation)

2T5 � T7 � T8 � T9 � � To � ( )

(g) Node 9. (On the outer boundary, subjected to convection and radiation,
Fig. 5–35)

k � 0 � ho (To � T9) � 	
 ( ) � 0T 4
sky � T 4
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FIGURE 5–34
Converting the boundary

nodes 3 and 5 on symmetry lines to
interior nodes by using mirror images.
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Schematics for energy balances on the

volume elements of nodes 7 and 9.

cen58933_ch05.qxd  9/4/2002  11:42 AM  Page 289



290
HEAT TRANSFER

Taking �x � �y � l, it simplifies to

T8 � T9 � � To � ( )

This problem involves radiation, which requires the use of absolute tempera-
ture, and thus all temperatures should be expressed in Kelvin. Alternately, we
could use °C for all temperatures provided that the four temperatures in the ra-
diation terms are expressed in the form (T � 273)4. Substituting the given
quantities, the system of nine equations for the determination of nine unknown
nodal temperatures in a form suitable for use with the Gauss-Seidel iteration
method becomes

T1 � (T2 � T3 � 2865)/7

T2 � (T1 � 2T4 � 2865)/8

T3 � (T1 � 2T4 � T6)/4

T4 � (T2 � T3 � T5 � T7)/4

T5 � (2T4 � 2T8)/4

T6 � (T2 � T3 � 456.2 � 0.3645 � 10�9 )/3.5

T7 � (2T4 � T6 � T8 � 912.4 � 0.729 � 10�9 )/7

T8 � (2T5 � T7 � T9 � 912.4 � 0.729 � 10�9 )/7

T9 � (T8 � 456.2 � 0.3645 � 10�9 )/2.5

which is a system of nonlinear equations. Using an equation solver, its solution
is determined to be

T1 � 545.7 K � 272.6°C T2 � 529.2 K � 256.1°C T3 � 425.2 K � 152.1°C

T4 � 411.2 K � 138.0°C T5 � 362.1 K � 89.0°C T6 � 332.9 K � 59.7°C

T7 � 328.1 K � 54.9°C T8 � 313.1 K � 39.9°C T9 � 296.5 K � 23.4°C

The variation of temperature in the chimney is shown in Figure 5–36.
Note that the temperatures are highest at the inner wall (but less than

300°C) and lowest at the outer wall (but more that 260 K), as expected.
The average temperature at the outer surface of the chimney weighed by the

surface area is

Twall, out �

� � 318.6 K

Then the rate of heat loss through the 1-m-long section of the chimney can be
determined approximately from

0.5 � 332.9 � 328.1 � 313.1 � 0.5 � 296.5
3

(0.5T6 � T7 � T8 � 0.5T9)
(0.5 � 1 � 1 � 0.5)

T 4
9

T 4
8

T 4
7

T 4
6

T 4
sky � T 4

9
	
l
k

ho l
k�1 �

ho l
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40
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60 273152 273 152 60

FIGURE 5–36
The variation of temperature
in the chimney.
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5–5 TRANSIENT HEAT CONDUCTION
So far in this chapter we have applied the finite difference method to steady
heat transfer problems. In this section we extend the method to solve transient
problems.

We applied the finite difference method to steady problems by discretizing
the problem in the space variables and solving for temperatures at discrete
points called the nodes. The solution obtained is valid for any time since under
steady conditions the temperatures do not change with time. In transient prob-
lems, however, the temperatures change with time as well as position, and
thus the finite difference solution of transient problems requires discretization
in time in addition to discretization in space, as shown in Figure 5–37. This is
done by selecting a suitable time step �t and solving for the unknown nodal
temperatures repeatedly for each �t until the solution at the desired time is ob-
tained. For example, consider a hot metal object that is taken out of the oven
at an initial temperature of Ti at time t � 0 and is allowed to cool in ambient
air. If a time step of �t � 5 min is chosen, the determination of the tempera-
ture distribution in the metal piece after 3 h requires the determination of the
temperatures 3 � 60/5 � 36 times, or in 36 time steps. Therefore, the compu-
tation time of this problem will be 36 times that of a steady problem. Choos-
ing a smaller �t will increase the accuracy of the solution, but it will also
increase the computation time.

In transient problems, the superscript i is used as the index or counter
of time steps, with i � 0 corresponding to the specified initial condition.
In the case of the hot metal piece discussed above, i � 1 corresponds to
t � 1 � �t � 5 min, i � 2 corresponds to t � 2 � �t � 10 min, and a general

�
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Q
·

chimney � ho Ao (Twall, out � To) � 	
Ao ( )

� (21 W/m2 · K)[4 � (0.6 m)(1 m)](318.6 � 293)K

� 0.9(5.67 � 10�8 W/m2 · K4)
[4 � (0.6 m)(1 m)](318.6 K)4 � (260 K)4]

� 1291 � 702 � 1993 W

We could also determine the heat transfer by finding the average temperature of
the inner wall, which is (272.6 � 256.1)/2 � 264.4°C, and applying Newton’s
law of cooling at that surface:

Q
·

chimney � hi Ai (Ti � Twall, in)

� (70 W/m2 · K)[4 � (0.2 m)(1 m)](300 � 264.4)°C � 1994 W

The difference between the two results is due to the approximate nature of the
numerical analysis.
Discussion We used a relatively crude numerical model to solve this problem
to keep the complexities at a manageable level. The accuracy of the solution ob-
tained can be improved by using a finer mesh and thus a greater number of
nodes. Also, when radiation is involved, it is more accurate (but more laborious)
to determine the heat losses for each node and add them up instead of using
the average temperature.

T 4
wall, out � T 4

sky

t

x

1

0

i

i + 1

0 1 m

∆ t

∆x

m – 1 m + 1

∆ t
∆x ∆x

Tm +1
i +1

Tm +1
i

Tm
i +1

Tm
i

Tm –1
i +1

Tm –1
i

FIGURE 5–37
Finite difference formulation of time-
dependent problems involves discrete

points in time as well as space.
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time step i corresponds to ti � i�t. The notation is used to represent the
temperature at the node m at time step i.

The formulation of transient heat conduction problems differs from that of
steady ones in that the transient problems involve an additional term repre-
senting the change in the energy content of the medium with time. This addi-
tional term appears as a first derivative of temperature with respect to time in
the differential equation, and as a change in the internal energy content during
�t in the energy balance formulation. The nodes and the volume elements in
transient problems are selected as they are in the steady case, and, again as-
suming all heat transfer is into the element for convenience, the energy bal-
ance on a volume element during a time interval �t can be expressed as

� �

or

�t � Q
·

� �t � G
·

element � �Eelement (5-37)

where the rate of heat transfer Q
·

normally consists of conduction terms for
interior nodes, but may involve convection, heat flux, and radiation for bound-
ary nodes.

Noting that �Eelement � mC�T � Velement C�T, where  is density and C is
the specific heat of the element, dividing the earlier relation by �t gives

Q
·

� G
·

element � � Velement C (5-38)

or, for any node m in the medium and its volume element, 

Q
·

� G
·

element � Velement C (5-39)

where and are the temperatures of node m at times ti � i�t and ti � 1 �
(i � 1)�t, respectively, and � represents the temperature change
of the node during the time interval �t between the time steps i and i � 1
(Fig. 5–38).

Note that the ratio ( � )/�t is simply the finite difference approxi-
mation of the partial derivative �T/�t that appears in the differential equations
of transient problems. Therefore, we would obtain the same result for the
finite difference formulation if we followed a strict mathematical approach
instead of the energy balance approach used above. Also note that the finite
difference formulations of steady and transient problems differ by the single
term on the right side of the equal sign, and the format of that term remains the
same in all coordinate systems regardless of whether heat transfer is one-,
two-, or three-dimensional. For the special case of � (i.e., no change
in temperature with time), the formulation reduces to that of steady case, as
expected.

T i
mT i�1

m

T i
mT i�1

m

T i
mT i�1

m

T i�1
mT i

m

T i�1
m � T i

m

�t�
All sides

�T
�t

�Eelement

�t�
All sides

�
All sides

�
The change in the
energy content of

the volume element
during �t ��

Heat generated
within the

volume element
during �t ��

Heat transferred into
the volume element

from all of its surfaces
during �t �

T i
m
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Node m

 = density

 = volume

 = mass

 = specific heat

 = temperature change

Volume element
(can be any shape)

V

V

C

∆T

ρ

ρ

∆U =   VC∆T =   VC(Tm
i + 1 – Tm

i )ρ ρ

FIGURE 5–38
The change in the energy content of
the volume element of a node
during a time interval �t.
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The nodal temperatures in transient problems normally change during each
time step, and you may be wondering whether to use temperatures at the pre-
vious time step i or the new time step i � 1 for the terms on the left side of Eq.
5–39. Well, both are reasonable approaches and both are used in practice. The
finite difference approach is called the explicit method in the first case and
the implicit method in the second case, and they are expressed in the general
form as (Fig. 5–39)

Explicit method: Q
· i � � Velement C (5-40)

Implicit method: Q
· i � 1 � � Velement C (5-41)

It appears that the time derivative is expressed in forward difference form in
the explicit case and backward difference form in the implicit case. Of course,
it is also possible to mix the two fundamental formulations of Eqs. 5–40 and
5–41 and come up with more elaborate formulations, but such formulations
offer little insight and are beyond the scope of this text. Note that both for-
mulations are simply expressions between the nodal temperatures before and
after a time interval and are based on determining the new temperatures 
using the previous temperatures . The explicit and implicit formulations
given here are quite general and can be used in any coordinate system re-
gardless of the dimension of heat transfer. The volume elements in multi-
dimensional cases simply have more surfaces and thus involve more terms in
the summation.

The explicit and implicit methods have their advantages and disadvantages,
and one method is not necessarily better than the other one. Next you will see
that the explicit method is easy to implement but imposes a limit on the al-
lowable time step to avoid instabilities in the solution, and the implicit method
requires the nodal temperatures to be solved simultaneously for each time step
but imposes no limit on the magnitude of the time step. We will limit the dis-
cussion to one- and two-dimensional cases to keep the complexities at a man-
ageable level, but the analysis can readily be extended to three-dimensional
cases and other coordinate systems.

Transient Heat Conduction in a Plane Wall
Consider transient one-dimensional heat conduction in a plane wall of thick-
ness L with heat generation g·(x, t) that may vary with time and position and
constant conductivity k with a mesh size of �x � L/M and nodes 0, 1, 2, . . . ,
M in the x-direction, as shown in Figure 5–40. Noting that the volume ele-
ment of a general interior node m involves heat conduction from two sides and
the volume of the element is Velement � A�x, the transient finite difference for-
mulation for an interior node can be expressed on the basis of Eq. 5–39 as

kA � kA � g·m A�x � A�xC (5-42)
T i�1

m � T i
m

�t

Tm�1 � Tm

�x

Tm�1 � Tm

�x

T i
m

T i�1
m

T i�1
m � T i

m

�t
G· i�1

element�
All sides

T i�1
m � T i

m

�t
G· i

element�
All sides
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If expressed at i + 1: Implicit method

If expressed at i: Explicit method

Tm
i + 1 – Tm

i 

————–
∆ t

Q + Gelement  =   VelementC
· ·

All sides
∑ ρ

FIGURE 5–39
The formulation of explicit and

implicit methods differs at the time
step (previous or new) at which the

heat transfer and heat generation
terms are expressed.
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FIGURE 5–40
The nodal points and volume elements

for the transient finite difference
formulation of one-dimensional

conduction in a plane wall.
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Canceling the surface area A and multiplying by �x/k, it simplifies to

Tm � 1 � 2Tm � Tm � 1 � � ( ) (5-43)

where � � k/C is the thermal diffusivity of the wall material. We now define
a dimensionless mesh Fourier number as

� � (5-44)

Then Eq. 5–43 reduces to

Tm � 1 � 2Tm � Tm � 1 � � (5-45)

Note that the left side of this equation is simply the finite difference formula-
tion of the problem for the steady case. This is not surprising since the formu-
lation must reduce to the steady case for � . Also, we are still not
committed to explicit or implicit formulation since we did not indicate the
time step on the left side of the equation. We now obtain the explicit finite dif-
ference formulation by expressing the left side at time step i as

� 2 � � � (explicit) (5-46)

This equation can be solved explicitly for the new temperature (and thus
the name explicit method) to give

� �( � ) � (1 � 2�) � � (5-47)

for all interior nodes m � 1, 2, 3, . . . , M � 1 in a plane wall. Expressing the
left side of Eq. 5–45 at time step i � 1 instead of i would give the implicit
finite difference formulation as

� 2 � � � (implicit) (5-48)

which can be rearranged as

� � (1 � 2�) � � � � � � 0 (5-49)

The application of either the explicit or the implicit formulation to each of the
M � 1 interior nodes gives M � 1 equations. The remaining two equations are
obtained by applying the same method to the two boundary nodes unless, of
course, the boundary temperatures are specified as constants (invariant with
time). For example, the formulation of the convection boundary condition at
the left boundary (node 0) for the explicit case can be expressed as (Fig. 5–41)

hA(T� � ) � kA � g· A � A C (5-50)
T i�1

0 � T i
0
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2
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FIGURE 5–41
Schematic for the explicit finite
difference formulation of the
convection condition at the left
boundary of a plane wall.
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which simplifies to

� 1 � 2� � 2� � 2� � 2� T� � � (5-51)

Note that in the case of no heat generation and � � 0.5, the explicit
finite difference formulation for a general interior node reduces to �
( � )/2, which has the interesting interpretation that the temperature
of an interior node at the new time step is simply the average of the tempera-
tures of its neighboring nodes at the previous time step.

Once the formulation (explicit or implicit) is complete and the initial condi-
tion is specified, the solution of a transient problem is obtained by marching
in time using a step size of �t as follows: select a suitable time step �t and de-
termine the nodal temperatures from the initial condition. Taking the initial
temperatures as the previous solution at t � 0, obtain the new solution 
at all nodes at time t � �t using the transient finite difference relations. Now
using the solution just obtained at t � �t as the previous solution , obtain
the new solution at t � 2�t using the same relations. Repeat the process
until the solution at the desired time is obtained.

Stability Criterion for Explicit Method: Limitation on �t
The explicit method is easy to use, but it suffers from an undesirable feature
that severely restricts its utility: the explicit method is not unconditionally sta-
ble, and the largest permissible value of the time step �t is limited by the sta-
bility criterion. If the time step �t is not sufficiently small, the solutions
obtained by the explicit method may oscillate wildly and diverge from the ac-
tual solution. To avoid such divergent oscillations in nodal temperatures, the
value of �t must be maintained below a certain upper limit established by the
stability criterion. It can be shown mathematically or by a physical argument
based on the second law of thermodynamics that the stability criterion is sat-
isfied if the coefficients of all in the expressions (called the primary
coefficients) are greater than or equal to zero for all nodes m (Fig. 5–42). Of
course, all the terms involving for a particular node must be grouped to-
gether before this criterion is applied.

Different equations for different nodes may result in different restrictions on
the size of the time step �t, and the criterion that is most restrictive should be
used in the solution of the problem. A practical approach is to identify the
equation with the smallest primary coefficient since it is the most restrictive
and to determine the allowable values of �t by applying the stability criterion
to that equation only. A �t value obtained this way will also satisfy the stabil-
ity criterion for all other equations in the system.

For example, in the case of transient one-dimensional heat conduction in a
plane wall with specified surface temperatures, the explicit finite difference
equations for all the nodes (which are interior nodes) are obtained from
Eq. 5–47. The coefficient of in the expression is 1 � 2�, which is
independent of the node number m, and thus the stability criterion for all
nodes in this case is 1 � 2� � 0 or

� � � (5-52)�interior nodes, one-dimensional heat
transfer in rectangular coordinates �1

2
��t
�x2

T i�1
mT i

m

T i
m

T i�1
mT i

m

T i�1
m

T i
m

T i�1
mT i

m

T i
m�1T i

m�1

T i�1
m

g· i
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Explicit formulation:

� a0 � · · ·

� a1 � · · ·

M

� am � · · ·

M

� aM � · · ·

Stability criterion:

am � 0, m � 0, 1, 2, . . . m, . . . M
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1
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FIGURE 5–42
The stability criterion of the

explicit method requires all primary
coefficients to be positive or zero.
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When the material of the medium and thus its thermal diffusivity � is known
and the value of the mesh size �x is specified, the largest allowable value of
the time step �t can be determined from this relation. For example, in the case
of a brick wall (� � 0.45 � 10�6 m2/s) with a mesh size of �x � 0.01 m, the
upper limit of the time step is

�t � � � 111s � 1.85 min

The boundary nodes involving convection and/or radiation are more re-
strictive than the interior nodes and thus require smaller time steps. Therefore,
the most restrictive boundary node should be used in the determination of the
maximum allowable time step �t when a transient problem is solved with
the explicit method.

To gain a better understanding of the stability criterion, consider the explicit
finite difference formulation for an interior node of a plane wall (Eq. 5–47) for
the case of no heat generation, 

� �( � ) � (1 � 2�)

Assume that at some time step i the temperatures and are equal but
less than (say, � � 50°C and � 80°C). At the next time
step, we expect the temperature of node m to be between the two values (say,
70°C). However, if the value of � exceeds 0.5 (say, � � 1), the temperature of
node m at the next time step will be less than the temperature of the neighbor-
ing nodes (it will be 20°C), which is physically impossible and violates the
second law of thermodynamics (Fig. 5–43). Requiring the new temperature of
node m to remain above the temperature of the neighboring nodes is equiva-
lent to requiring the value of � to remain below 0.5.

The implicit method is unconditionally stable, and thus we can use any time
step we please with that method (of course, the smaller the time step, the bet-
ter the accuracy of the solution). The disadvantage of the implicit method is
that it results in a set of equations that must be solved simultaneously for each
time step. Both methods are used in practice.

T i
mT i

m�1T i
m�1T i

m
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T i
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m�1T i
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m
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50°C

m – 1 m

Time step: i

m + 1

80°C

50°C

m – 1 m

Time step: i + 1

m + 1

20°C

FIGURE 5–43
The violation of the stability criterion
in the explicit method may result in
the violation of the second law of
thermodynamics and thus
divergence of solution.

EXAMPLE 5–5 Transient Heat Conduction in a Large Uranium
Plate

Consider a large uranium plate of thickness L � 4 cm, thermal conductivity k �
28 W/m · °C, and thermal diffusivity � � 12.5 � 10�6 m2/s that is initially at
a uniform temperature of 200°C. Heat is generated uniformly in the plate at a
constant rate of g· � 5 � 106 W/m3. At time t � 0, one side of the plate is
brought into contact with iced water and is maintained at 0°C at all times, while
the other side is subjected to convection to an environment at T� � 30°C with
a heat transfer coefficient of h � 45 W/m2 · °C, as shown in Figure 5–44. Con-
sidering a total of three equally spaced nodes in the medium, two at the bound-
aries and one at the middle, estimate the exposed surface temperature of the
plate 2.5 min after the start of cooling using (a) the explicit method and (b) the
implicit method.

10
0

2 x
L

Uranium plate

Tinitial = 200°C

h
T�

0°C

∆x ∆x

k = 28 W/m·°C

g = 5 × 106 W/m3

= 12.5 × 10–6 m2/s

·

α

FIGURE 5–44
Schematic for Example 5–5.

cen58933_ch05.qxd  9/4/2002  11:42 AM  Page 296



CHAPTER 5
297

SOLUTION We have solved this problem in Example 5–1 for the steady case,
and here we repeat it for the transient case to demonstrate the application of
the transient finite difference methods. Again we assume one-dimensional heat
transfer in rectangular coordinates and constant thermal conductivity. The num-
ber of nodes is specified to be M � 3, and they are chosen to be at the two sur-
faces of the plate and at the middle, as shown in the figure. Then the nodal
spacing �x becomes

�x � � 0.02 m

We number the nodes as 0, 1, and 2. The temperature at node 0 is given to be
T0 � 0°C at all times, and the temperatures at nodes 1 and 2 are to be deter-
mined. This problem involves only two unknown nodal temperatures, and thus
we need to have only two equations to determine them uniquely. These equa-
tions are obtained by applying the finite difference method to nodes 1 and 2.

(a) Node 1 is an interior node, and the explicit finite difference formulation at
that node is obtained directly from Eq. 5–47 by setting m � 1:

� �(T0 � ) � (1 � 2�) � � (1)

Node 2 is a boundary node subjected to convection, and the finite difference
formulation at that node is obtained by writing an energy balance on the volume
element of thickness �x/2 at that boundary by assuming heat transfer to be into
the medium at all sides (Fig. 5–45):

hA(T� � ) � kA � g·2 A � A C

Dividing by kA/2�x and using the definitions of thermal diffusivity � � k/C and
the dimensionless mesh Fourier number � � ��t/(�x)2 gives

(T� � ) � 2( � ) � �

which can be solved for to give

� 1 � 2� � 2� � � 2 � 2 T� � (2)

Note that we did not use the superscript i for quantities that do not change with
time. Next we need to determine the upper limit of the time step �t from the
stability criterion, which requires the coefficient of in Equation 1 and the co-
efficient of in the second equation to be greater than or equal to zero. The
coefficient of is smaller in this case, and thus the stability criterion for this
problem can be expressed as

1 � 2� � 2� � 0 → � � → �t �
�x2
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FIGURE 5–45
Schematic for the explicit

finite difference formulation of the
convection condition at the right

boundary of a plane wall.
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since � � ��t/(�x)2. Substituting the given quantities, the maximum allowable
value of the time step is determined to be

�t � � 15.5 s

Therefore, any time step less than 15.5 s can be used to solve this problem. For
convenience, let us choose the time step to be �t � 15 s. Then the mesh
Fourier number becomes

� � � � 0.46875   (for �t � 15 s)

Substituting this value of � and other given quantities, the explicit finite differ-
ence equations (1) and (2) developed here reduce to

� 0.0625 � 0.46875 � 33.482

� 0.9375 � 0.032366 � 34.386

The initial temperature of the medium at t � 0 and i � 0 is given to be 200°C
throughout, and thus � � 200°C. Then the nodal temperatures at 
and at t � �t � 15 s are determined from these equations to be

� 0.0625 � 0.46875 � 33.482

� 0.0625 � 200 � 0.46875 � 200 � 33.482 � 139.7°C

� 0.9375 � 0.032366 � 34.386

� 0.9375 � 200 � 0.032366 � 200 � 34.386 � 228.4°C

Similarly, the nodal temperatures and at t � 2�t � 2 � 15 � 30 s are
determined to be

� 0.0625 � 0.46875 � 33.482

� 0.0625 � 139.7 � 0.46875 � 228.4 � 33.482 � 149.3°C

� 0.9375 � 0.032366 � 34.386

� 0.9375 � 139.7 � 0.032366 � 228.4 � 34.386 � 172.8°C

Continuing in the same manner, the temperatures at nodes 1 and 2 are de-
termined for i � 1, 2, 3, 4, 5, . . . , 50 and are given in Table 5–2. Therefore,
the temperature at the exposed boundary surface 2.5 min after the start of
cooling is

� � 139.0°C

(b) Node 1 is an interior node, and the implicit finite difference formulation at
that node is obtained directly from Eq. 5–49 by setting m � 1:

�T0 � (1 � 2�) � � � � � � 0 (3)

Node 2 is a boundary node subjected to convection, and the implicit finite dif-
ference formulation at that node can be obtained from this formulation by ex-
pressing the left side of the equation at time step i � 1 instead of i as

T i
1

g·0 �x2

k
T i�1

2T i�1
1

T 10
2T 2.5 min

L

T 1
2T 1

1T 2
2

T 1
2T 1

1T 2
1

T 2
2T 2

1

T 0
2T 0

1T 1
2

T 0
2T 0

1T 1
1

T 1
2

T 1
1T 0

2T 0
1

T i
2T i

1T i�1
2

T i
2T i

1T i�1
1

(12.5 � 10�6 m2/s)(15 s)

(0.02 m)2

α�t
(�x)2

(0.02 m)2

2(12.5 � 10�6 m2/s)[1 � (45 W/m2 ·  °C)(0.02 m)/28 W/m ·  °C]

TABLE 5–2

The variation of the nodal
temperatures in Example 5–5 with
time obtained by the explicit
method

Node
Temperature, °CTime Time,

Step, i s
0 0 200.0 200.0
1 15 139.7 228.4
2 30 149.3 172.8
3 45 123.8 179.9
4 60 125.6 156.3
5 75 114.6 157.1
6 90 114.3 146.9
7 105 109.5 146.3
8 120 108.9 141.8
9 135 106.7 141.1

10 150 106.3 139.0
20 300 103.8 136.1
30 450 103.7 136.0
40 600 103.7 136.0

T i
2T i

1
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(T� � ) � 2( � ) � �

which can be rearranged as

2� � 1 � 2� � 2� � 2� T� � � � � 0 (4)

Again we did not use the superscript i or i � 1 for quantities that do not change
with time. The implicit method imposes no limit on the time step, and thus we
can choose any value we want. However, we will again choose �t � 15 s, and
thus � � 0.46875, to make a comparison with part (a) possible. Substituting
this value of � and other given quantities, the two implicit finite difference
equations developed here reduce to

–1.9375 � 0.46875 � � 33.482 � 0

0.9375 � 1.9676 � � 34.386 � 0

Again � � 200°C at t � 0 and i � 0 because of the initial condition,
and for i � 0, these two equations reduce to

�1.9375 � 0.46875 � 200 � 33.482 � 0

0.9375 � 1.9676 � 200 � 34.386 � 0

The unknown nodal temperatures and at t � �t � 15 s are determined by
solving these two equations simultaneously to be

� 168.8°C and � 199.6°C

Similarly, for i � 1, these equations reduce to

�1.9375 � 0.46875 � 168.8 � 33.482 � 0

0.9375 � 1.9676 � 199.6 � 34.386 � 0

The unknown nodal temperatures and at t � �t � 2 � 15 � 30 s are
determined by solving these two equations simultaneously to be

� 150.5°C and � 190.6°C

Continuing in this manner, the temperatures at nodes 1 and 2 are determined
for i � 2, 3, 4, 5, . . . , 40 and are listed in Table 5–3, and the temperature
at the exposed boundary surface (node 2) 2.5 min after the start of cooling is
obtained to be

� � 143.9°C

which is close to the result obtained by the explicit method. Note that either
method could be used to obtain satisfactory results to transient problems, ex-
cept, perhaps, for the first few time steps. The implicit method is preferred
when it is desirable to use large time steps, and the explicit method is preferred
when one wishes to avoid the simultaneous solution of a system of algebraic
equations.

T 10
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1
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1
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2T i�1
1

T i
1T i�1

2T i�1
1

T i
2

g·2 �x2
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TABLE 5–3

The variation of the nodal
temperatures in Example 5–5 with
time obtained by the implicit
method

Node
Temperature, °CTime Time,

Step, i s

0 0 200.0 200.0
1 15 168.8 199.6
2 30 150.5 190.6
3 45 138.6 180.4
4 60 130.3 171.2
5 75 124.1 163.6
6 90 119.5 157.6
7 105 115.9 152.8
8 120 113.2 149.0
9 135 111.0 146.1

10 150 109.4 143.9
20 300 104.2 136.7
30 450 103.8 136.1
40 600 103.8 136.1

T i
2T i

1
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EXAMPLE 5–6 Solar Energy Storage in Trombe Walls

Dark painted thick masonry walls called Trombe walls are commonly used on
south sides of passive solar homes to absorb solar energy, store it during the
day, and release it to the house during the night (Fig. 5–46). The idea was pro-
posed by E. L. Morse of Massachusetts in 1881 and is named after Professor
Felix Trombe of France, who used it extensively in his designs in the 1970s.
Usually a single or double layer of glazing is placed outside the wall and trans-
mits most of the solar energy while blocking heat losses from the exposed sur-
face of the wall to the outside. Also, air vents are commonly installed at the
bottom and top of the Trombe walls so that the house air enters the parallel flow
channel between the Trombe wall and the glazing, rises as it is heated, and en-
ters the room through the top vent.

Consider a house in Reno, Nevada, whose south wall consists of a 1-ft-thick
Trombe wall whose thermal conductivity is k � 0.40 Btu/h · ft · °F and whose
thermal diffusivity is � � 4.78 � 10�6 ft2/s. The variation of the ambient tem-
perature Tout and the solar heat flux q· solar incident on a south-facing vertical sur-
face throughout the day for a typical day in January is given in Table 5–4 in 3-h
intervals. The Trombe wall has single glazing with an absorptivity-transmissivity
product of � � 0.77 (that is, 77 percent of the solar energy incident is ab-
sorbed by the exposed surface of the Trombe wall), and the average combined
heat transfer coefficient for heat loss from the Trombe wall to the ambient is de-
termined to be hout � 0.7 Btu/h · ft2 · °F. The interior of the house is maintained
at Tin � 70°F at all times, and the heat transfer coefficient at the interior sur-
face of the Trombe wall is hin � 1.8 Btu/h · ft2 · °F. Also, the vents on the
Trombe wall are kept closed, and thus the only heat transfer between the air in
the house and the Trombe wall is through the interior surface of the wall. As-
suming the temperature of the Trombe wall to vary linearly between 70°F at the
interior surface and 30°F at the exterior surface at 7 AM and using the explicit
finite difference method with a uniform nodal spacing of �x � 0.2 ft, determine
the temperature distribution along the thickness of the Trombe wall after 12,
24, 36, and 48 h. Also, determine the net amount of heat transferred to the
house from the Trombe wall during the first day and the second day. Assume the
wall is 10 ft high and 25 ft long.

SOLUTION The passive solar heating of a house through a Trombe wall is con-
sidered. The temperature distribution in the wall in 12-h intervals and the
amount of heat transfer during the first and second days are to be determined.
Assumptions 1 Heat transfer is one-dimensional since the exposed surface of
the wall is large relative to its thickness. 2 Thermal conductivity is constant.
3 The heat transfer coefficients are constant.
Properties The wall properties are given to be k � 0.40 Btu/h · ft · °F, � �
4.78 � 10�6 ft2/s, and � � 0.77.
Analysis The nodal spacing is given to be �x � 0.2 ft, and thus the total num-
ber of nodes along the Trombe wall is

M � � 1 � � 1 � 6

We number the nodes as 0, 1, 2, 3, 4, and 5, with node 0 on the interior sur-
face of the Trombe wall and node 5 on the exterior surface, as shown in Figure
5–47. Nodes 1 through 4 are interior nodes, and the explicit finite difference
formulations of these nodes are obtained directly from Eq. 5–47 to be

1 ft
0.2 ft

L
�x

South

Sun’s
rays

Trombe
wall

Vent

Glazing

Warm
air

Cool
air

Heat
gain

Heat
loss

FIGURE 5–46
Schematic of a Trombe wall
(Example 5–6).

TABLE 5–4

The hourly variation of monthly
average ambient temperature and
solar heat flux incident on a vertical
surface for January in Reno, Nevada

Time Ambient Solar 
of Temperature, Radiation, 

Day °F Btu/h · ft2

7 AM–10 AM 33 114
10 AM–1 PM 43 242

1 PM–4 PM 45 178
4 PM–7 PM 37 0
7 PM–10 PM 32 0

10 PM–1 AM 27 0
1 AM–4 AM 26 0
4 AM–7 AM 25 0
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Node 1 (m � 1): � �( � ) � (1 � 2�) (1)

Node 2 (m � 2): � �( � ) � (1 � 2�) (2)

Node 3 (m � 3): � �( � ) � (1 � 2�) (3)

Node 4 (m � 4): � �( � ) � (1 � 2�) (4)

The interior surface is subjected to convection, and thus the explicit formula-
tion of node 0 can be obtained directly from Eq. 5–51 to be

� 1 � 2� � 2� � 2� � 2� Tin

Substituting the quantities hin, �x, k, and Tin, which do not change with time,
into this equation gives

� (1 � 3.80�) � �(2 � 126.0) (5)

The exterior surface of the Trombe wall is subjected to convection as well as to
heat flux. The explicit finite difference formulation at that boundary is obtained
by writing an energy balance on the volume element represented by node 5,

hout A( � ) � �Aq· � kA � A C (5-53)

which simplifies to

� 1 � 2� � 2� � 2� � 2� � 2� (5-54)

where � � ��t/�x2 is the dimensionless mesh Fourier number. Note that we
kept the superscript i for quantities that vary with time. Substituting the quan-
tities hout, �x, k, and �, which do not change with time, into this equation gives

� (1 � 2.70�) � �(2 � 0.70 � 0.770q· ) (6)

where the unit of q· is Btu/h · ft2.
Next we need to determine the upper limit of the time step �t from the sta-

bility criterion since we are using the explicit method. This requires the iden-
tification of the smallest primary coefficient in the system. We know that the
boundary nodes are more restrictive than the interior nodes, and thus we exam-
ine the formulations of the boundary nodes 0 and 5 only. The smallest and thus
the most restrictive primary coefficient in this case is the coefficient of in the
formulation of node 0 since 1 � 3.8� � 1 � 2.7�, and thus the stability cri-
terion for this problem can be expressed as

1 � 3.80 � � 0 → � � �

Substituting the given quantities, the maximum allowable value of the time step
is determined to be

�t � � � 2202 s
(0.2 ft)2

3.80 � (4.78 � 10�6 ft2/s)
�x2
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FIGURE 5–47
The nodal network for the Trombe

wall discussed in Example 5–6.
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Therefore, any time step less than 2202 s can be used to solve this problem.
For convenience, let us choose the time step to be �t � 900 s � 15 min. Then
the mesh Fourier number becomes

� � � � 0.10755 (for �t � 15 min)

Initially (at 7 AM or t � 0), the temperature of the wall is said to vary linearly be-
tween 70°F at node 0 and 30°F at node 5. Noting that there are five nodal
spacings of equal length, the temperature change between two neighboring
nodes is (70 � 30)°F/5 � 8°F. Therefore, the initial nodal temperatures are

� 70°F, � 62°F, � 54°F,

� 46°F, � 38°F, � 30°F

Then the nodal temperatures at t � �t � 15 min (at 7:15 AM) are determined
from these equations to be

� (1 � 3.80�) � �(2 � 126.0)

� (1 � 3.80 � 0.10755) 70 � 0.10755(2 � 62 � 126.0) � 68.3° F

� �( � ) � (1 � 2�) 

� 0.10755(70 � 54) � (1 � 2 � 0.10755)62 � 62°F

� �( � ) � (1 � 2�) 

� 0.10755(62 � 46) � (1 � 2 � 0.10755)54 � 54°F

� �( � ) � (1 � 2�) 

� 0.10755(54 � 38) � (1 � 2 � 0.10755)46 � 46°F

� �( � ) � (1 � 2�) 

� 0.10755(46 � 30) � (1 � 2 � 0.10755)38 � 38°F

� (1 � 2.70�) � �(2 � 0.70 � 0.770q· )

� (1 � 2.70 � 0.10755)30 � 0.10755(2 � 38 � 0.70 � 33 � 0.770 � 114)

� 41.4°F

Note that the inner surface temperature of the Trombe wall dropped by 1.7°F
and the outer surface temperature rose by 11.4°F during the first time step
while the temperatures at the interior nodes remained the same. This is typical
of transient problems in mediums that involve no heat generation. The nodal
temperatures at the following time steps are determined similarly with the help
of a computer. Note that the data for ambient temperature and the incident
solar radiation change every 3 hours, which corresponds to 12 time steps,
and this must be reflected in the computer program. For example, the value of
q· must be taken to be q· � 75 for i � 1–12, q· � 242 for i � 13–24,
q· � 178 for i � 25–36, and q· � 0 for i � 37–96.

The results after 6, 12, 18, 24, 30, 36, 42, and 48 h are given in Table 5–5
and are plotted in Figure 5–48 for the first day. Note that the interior tempera-
ture of the Trombe wall drops in early morning hours, but then rises as the solar
energy absorbed by the exterior surface diffuses through the wall. The exterior
surface temperature of the Trombe wall rises from 30 to 142°F in just 6 h be-
cause of the solar energy absorbed, but then drops to 53°F by next morning as
a result of heat loss at night. Therefore, it may be worthwhile to cover the outer
surface at night to minimize the heat losses.
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FIGURE 5–48
The variation of temperatures in
the Trombe wall discussed
in Example 5–6.
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The rate of heat transfer from the Trombe wall to the interior of the house dur-
ing each time step is determined from Newton’s law using the average temper-
ature at the inner surface of the wall (node 0) as

Q � Q
·

�t � hin A( � Tin) �t � hin A[( � )/2 � Tin]�t

Therefore, the amount of heat transfer during the first time step (i � 1) or
during the first 15-min period is

Q � hin A[( � )/2 � Tin] �t

� (1.8 Btu/h · ft2 · °F)(10 � 25 ft2)[(68.3 � 70)/2 � 70°F](0.25 h)

� �95.6 Btu

The negative sign indicates that heat is transferred to the Trombe wall from the
air in the house, which represents a heat loss. Then the total heat transfer dur-
ing a specified time period is determined by adding the heat transfer amounts
for each time step as

QTrombe wall � Q
·

� hin A[( � )/2 � Tin] �t (5-55)

where I is the total number of time intervals in the specified time period. In this
case I � 48 for 12 h, 96 for 24 h, and so on. Following the approach described
here using a computer, the amount of heat transfer between the Trombe wall
and the interior of the house is determined to be

QTrombe wall � �17, 048 Btu after 12 h (�17, 078 Btu during the first 12 h)

QTrombe wall � �2483 Btu after 24 h (14, 565 Btu during the second 12 h)

QTrombe wall � 5610 Btu after 36 h (8093 Btu during the third 12 h)

QTrombe wall � 34, 400 Btu after 48 h (28, 790 Btu during the fourth 12 h)

Therefore, the house loses 2483 Btu through the Trombe wall the first day as a
result of the low start-up temperature but delivers a total of 36,883 Btu of heat
to the house the second day. It can be shown that the Trombe wall will deliver
even more heat to the house during the third day since it will start the day at a
higher average temperature.

T i�1
0T i
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i�1

i
Trombe wall�

I

i�1

T 0
0T 1

0
1
Trombe wall

T i�1
0T i

0T i
0

i
Trombe wall

i
Trombe wall

TABLE 5–5

The temperatures at the nodes of a Trombe wall at various times

Nodal Temperatures, °FTime 
Time Step, i T0 T1 T2 T3 T4 T5

0 h (7 AM) 0 70.0 62.0 54.0 46.0 38.0 30.0
6 h (1 PM) 24 65.3 61.7 61.5 69.7 94.1 142.0

12 h (7 PM) 48 71.6 74.2 80.4 88.4 91.7 82.4
18 h (1 AM) 72 73.3 75.9 77.4 76.3 71.2 61.2
24 h (7 AM) 96 71.2 71.9 70.9 67.7 61.7 53.0
30 h (1 PM) 120 70.3 71.1 74.3 84.2 108.3 153.2
36 h (7 PM) 144 75.4 81.1 89.4 98.2 101.0 89.7
42 h (1 AM) 168 75.8 80.7 83.5 83.0 77.4 66.2
48 h (7 AM) 192 73.0 75.1 72.2 66.0 66.0 56.3
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Two-Dimensional Transient Heat Conduction
Consider a rectangular region in which heat conduction is significant in the 
x- and y-directions, and consider a unit depth of �z � 1 in the z-direction.
Heat may be generated in the medium at a rate of g·(x, y, t), which may vary
with time and position, with the thermal conductivity k of the medium as-
sumed to be constant. Now divide the x-y-plane of the region into a rectangu-
lar mesh of nodal points spaced �x and �y apart in the x- and y-directions,
respectively, and consider a general interior node (m, n) whose coordinates are
x � m�x and y � n�y, as shown in Figure 5–49. Noting that the volume ele-
ment centered about the general interior node (m, n) involves heat conduction
from four sides (right, left, top, and bottom) and the volume of the element is
Velement � �x � �y � 1 � �x�y, the transient finite difference formulation for
a general interior node can be expressed on the basis of Eq. 5–39 as

k�y � k�x � k�y 

� k�x � g·m, n �x�y � �x�y C (5-56)

Taking a square mesh (�x � �y � l ) and dividing each term by k gives after
simplifying,

Tm � 1, n � Tm � 1, n � Tm, n � 1 � Tm, n � 1 � 4Tm, n � � (5-57)

where again � � k/C is the thermal diffusivity of the material and � � ��t/l 2

is the dimensionless mesh Fourier number. It can also be expressed in terms of
the temperatures at the neighboring nodes in the following easy-to-remember
form:

Tleft � Ttop � Tright � Tbottom � 4Tnode � � (5-58)

Again the left side of this equation is simply the finite difference formulation
of the problem for the steady case, as expected. Also, we are still not com-
mitted to explicit or implicit formulation since we did not indicate the time
step on the left side of the equation. We now obtain the explicit finite differ-
ence formulation by expressing the left side at time step i as

� � (5-59)

Expressing the left side at time step i � 1 instead of i would give the implicit
formulation. This equation can be solved explicitly for the new temperature

to give

� �( ) � (1 � 4�) � � (5-60)

for all interior nodes (m, n) where m � 1, 2, 3, . . . , M � 1 and n � 1, 2,
3, . . . , N � 1 in the medium. In the case of no heat generation and � � , the1
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FIGURE 5–49
The volume element of a
general interior node (m, n) for two-
dimensional transient conduction
in rectangular coordinates.
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explicit finite difference formulation for a general interior node reduces to
� ( )/4, which has the interpretation that the

temperature of an interior node at the new time step is simply the average
of the temperatures of its neighboring nodes at the previous time step
(Fig. 5–50).

The stability criterion that requires the coefficient of in the expres-
sion to be greater than or equal to zero for all nodes is equally valid for two-
or three-dimensional cases and severely limits the size of the time step �t that
can be used with the explicit method. In the case of transient two-dimensional
heat transfer in rectangular coordinates, the coefficient of in the ex-
pression is 1 � 4�, and thus the stability criterion for all interior nodes in this
case is 1 � 4� � 0, or

� � � (5-61)

where �x � �y � l. When the material of the medium and thus its thermal
diffusivity � are known and the value of the mesh size l is specified, the
largest allowable value of the time step �t can be determined from the relation
above. Again the boundary nodes involving convection and/or radiation are
more restrictive than the interior nodes and thus require smaller time steps.
Therefore, the most restrictive boundary node should be used in the determi-
nation of the maximum allowable time step �t when a transient problem is
solved with the explicit method.

The application of Eq. 5–60 to each of the (M � 1) � (N � 1) interior nodes
gives (M � 1) � (N � 1) equations. The remaining equations are obtained by
applying the method to the boundary nodes unless, of course, the boundary
temperatures are specified as being constant. The development of the transient
finite difference formulation of boundary nodes in two- (or three-) dimen-
sional problems is similar to the development in the one-dimensional case dis-
cussed earlier. Again the region is partitioned between the nodes by forming
volume elements around the nodes, and an energy balance is written for each
boundary node on the basis of Eq. 5–39. This is illustrated in Example 5–7.

(interior nodes, two-dimensional heat
transfer in rectangular coordinates)

1
4

��t
l 2

T i�1
mT i

m

T i�1
mT i

m

T i
left � T i

top � T i
right � T i

bottomT i�1
node
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20°C

Time step i:

30°C

40°C

Node   m

10°C

Tm
i 

25°C

Time step i + 1:

Node   m

Tm
i + 1 

FIGURE 5–50
In the case of no heat generation
and � � , the temperature of an

interior node at the new time step is
the average of the temperatures of

its neighboring nodes at the
previous time step.

1
4

EXAMPLE 5–7 Transient Two-Dimensional Heat Conduction
in L-Bars

Consider two-dimensional transient heat transfer in an L-shaped solid body that
is initially at a uniform temperature of 90°C and whose cross section is given
in Figure 5–51. The thermal conductivity and diffusivity of the body are k �
15 W/m · °C and � � 3.2 � 10�6 m2/s, respectively, and heat is generated in
the body at a rate of g· � 2 � 106 W/m3. The left surface of the body is insu-
lated, and the bottom surface is maintained at a uniform temperature of 90°C
at all times. At time t � 0, the entire top surface is subjected to convection to
ambient air at T� � 25°C with a convection coefficient of h � 80 W/m2 · °C,
and the right surface is subjected to heat flux at a uniform rate of q·R � 5000
W/m2. The nodal network of the problem consists of 15 equally spaced nodes
with �x � �y � 1.2 cm, as shown in the figure. Five of the nodes are at the bot-
tom surface, and thus their temperatures are known. Using the explicit method,
determine the temperature at the top corner (node 3) of the body after 1, 3, 5,
10, and 60 min.

12 13 14 151110

6 7 8 954

321

x

y

∆x ∆x ∆x ∆x ∆x

∆y

∆y

90°C

qR
·

∆x = ∆y = l

Convection
h, T�

FIGURE 5–51
Schematic and nodal network for

Example 5–7.
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SOLUTION This is a transient two-dimensional heat transfer problem in rec-
tangular coordinates, and it was solved in Example 5–3 for the steady case.
Therefore, the solution of this transient problem should approach the solution
for the steady case when the time is sufficiently large. The thermal conductiv-
ity and heat generation rate are given to be constants. We observe that all nodes
are boundary nodes except node 5, which is an interior node. Therefore, we will
have to rely on energy balances to obtain the finite difference equations. The re-
gion is partitioned among the nodes equitably as shown in the figure, and the
explicit finite difference equations are determined on the basis of the energy
balance for the transient case expressed as

Q
· i � G

·
� Velement C 

The quantities h, T�, g· , and q·R do not change with time, and thus we do not
need to use the superscript i for them. Also, the energy balance expressions are
simplified using the definitions of thermal diffusivity � � k/C and the dimen-
sionless mesh Fourier number � � ��t/l2, where �x � �y � l.

(a) Node 1. (Boundary node subjected to convection and insulation, Fig.
5–52a)

h (T� � ) � k � k

� g·1 �  C

Dividing by k/4 and simplifying, 

(T� � ) � 2( � ) � 2( � ) � �

which can be solved for to give

� 1 � 4� � 2� � 2� � � T� �

(b) Node 2. (Boundary node subjected to convection, Fig. 5–52b)

h�x(T� � ) � k � k�x

� k � g·2 �x � �x C

Dividing by k/2, simplifying, and solving for gives

� 1 � 4� � 2� � � � � 2 � T� �
g·2l 2

k �2hl
k

T i
5T i

3T i
1�T i

2
hl
k ��T i�1

2

T i�1
2

T i�1
2 � T i

2

�t

�y
2

�y
2

T i
1 � T i

2

�x

�y
2

T i
5 � T i

2

�y

T i
3 � T i

2

�x

�y
2

T i
2

g·1l 2

2k �hl
k

T i
4T i

2�T i
1

hl
k ��T i�1

1

T i�1
1

T i�1
1 � T i

1
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g·1l 2

k
T i

1T i
4T i

1T i
2T i

1
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1 � T i

1
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4 � T i

1
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1
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�t
i
element�

All sides

h, T�

1

4

2

(a) Node 1

h, T�

21
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(b) Node 2

FIGURE 5–52
Schematics for energy balances on the
volume elements of nodes 1 and 2.
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(c) Node 3. (Boundary node subjected to convection on two sides, Fig. 5–53a)

h (T� � ) � k

� k � g·3 � 

Dividing by k/4, simplifying, and solving for gives

� 1 � 4� � 4� � 2� � � 2 T� �

(d ) Node 4. (On the insulated boundary, and can be treated as an interior node,
Fig. 5–53b). Noting that T10 � 90°C, Eq. 5–60 gives

� (1 � 4�) � � � 2 � 90 �

(e) Node 5. (Interior node, Fig. 5–54a). Noting that T11 � 90°C, Eq. 5–60
gives

� (1 � 4�) � � � � � 90 �

(f ) Node 6. (Boundary node subjected to convection on two sides, Fig. 5–54b)

h (T� � ) � k � k�x � k�y

� � g·6 �  C 

Dividing by 3k/4, simplifying, and solving for gives

� 1 � 4� � 4�

� 2 � 4 � 2 � 4 � 90 � 4 T� � 3 

(g) Node 7. (Boundary node subjected to convection, Fig. 5–55)

h�x(T� � ) � k � k�x

� k � g·7�x � �x C

Dividing by k/2, simplifying, and solving for gives

� 1 � 4� � 2� � � � � 2 � 90 � T� �
g·7l 2

k �2hl
kT i

8T i
6�T i

7
hl
k ��T i�1

7

T i�1
7

T i�1
7 � T i

7

�t

�y
2

�y
2

T i
6 � T i

7

�x

�y
2

T i
13 � T i

7

�y

T i
8 � T i

7

�x
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2

T i
7

g·6l 2

k �hl
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T i
7T i

5T i
3
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T i
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hl
3k ��T i�1

6
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6
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3 � T i

6

�y
�x
2

T i
5 � T i

6

�x

T i
12 � T i

6

�y

T i
7 � T i

6

�x

�y
2

T i
6��x

2
�

�y
2 �

g·5l 2

k �T i
6T i

4T i
2�T i

5T i�1
5

g·4l 2
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FIGURE 5–53
Schematics for energy balances on the

volume elements of nodes 3 and 4.
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FIGURE 5–54
Schematics for energy balances on the

volume elements of nodes 5 and 6.
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FIGURE 5–55
Schematics for energy balances on the

volume elements of nodes 7 and 9.
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(h) Node 8. This node is identical to node 7, and the finite difference formula-
tion of this node can be obtained from that of node 7 by shifting the node num-
bers by 1 (i.e., replacing subscript m by subscript m � 1). It gives

� 1 � 4� � 2� � � � � 2 � 90 � T� �

(i ) Node 9. (Boundary node subjected to convection on two sides, Fig. 5–55)

h (T� � ) � q·R k

� � g·9 �  C

Dividing by k/4, simplifying, and solving for gives

� 1 � 4� � 2� � 2� � 90 � � T� �

This completes the finite difference formulation of the problem. Next we need
to determine the upper limit of the time step �t from the stability criterion,
which requires the coefficient of in the expression (the primary coeffi-
cient) to be greater than or equal to zero for all nodes. The smallest primary co-
efficient in the nine equations here is the coefficient of in the expression,
and thus the stability criterion for this problem can be expressed as

1 � 4� � 4� � 0 → � � → �t �

since � � ��t /l 2. Substituting the given quantities, the maximum allowable
value of the time step is determined to be

�t � � 10.6 s

Therefore, any time step less than 10.6 s can be used to solve this problem. For
convenience, let us choose the time step to be �t � 10 s. Then the mesh
Fourier number becomes

� � � � 0.222 (for �t � 10 s)

Substituting this value of � and other given quantities, the developed transient
finite difference equations simplify to

� 0.0836 � 0.444( � � 11.2)

� 0.0836 � 0.222( � � 2 � 22.4)

� 0.0552 � 0.444( � � 12.8)

� 0.112 � 0.222( � 2 � 109.2)

� 0.112 � 0.222( � � � 109.2)T i
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� 0.0931 � 0.074(2 � 4 � 2 � 424)

� 0.0836 � 0.222( � � 202.4)

� 0.0836 � 0.222( � � 202.4)

� 0.0836 � 0.444( � 105.2)

Using the specified initial condition as the solution at time t � 0 (for i � 0),
sweeping through these nine equations will give the solution at intervals of
10 s. The solution at the upper corner node (node 3) is determined to be
100.2, 105.9, 106.5, 106.6, and 106.6°C at 1, 3, 5, 10, and 60 min, re-
spectively. Note that the last three solutions are practically identical to the
solution for the steady case obtained in Example 5–3. This indicates that steady
conditions are reached in the medium after about 5 min.

T i
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T i
9T i

7T i
8T i�1
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T i
8T i

6T i
7T i�1
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T i
7T i

5T i
3T i

6T i�1
6

TOPIC OF SPECIAL INTEREST

Controlling the Numerical Error

A comparison of the numerical results with the exact results for tempera-
ture distribution in a cylinder would show that the results obtained by a nu-
merical method are approximate, and they may or may not be sufficiently
close to the exact (true) solution values. The difference between a numeri-
cal solution and the exact solution is the error involved in the numerical
solution, and it is primarily due to two sources:

• The discretization error (also called the truncation or formulation
error), which is caused by the approximations used in the formulation
of the numerical method.

• The round-off error, which is caused by the computer’s use of a
limited number of significant digits and continuously rounding (or
chopping) off the digits it cannot retain.

Below we discuss both types of errors.

Discretization Error
The discretization error involved in numerical methods is due to replacing
the derivatives by differences in each step, or the actual temperature distri-
bution between two adjacent nodes by a straight line segment.

Consider the variation of the solution of a transient heat transfer problem
with time at a specified nodal point. Both the numerical and actual (exact)
solutions coincide at the beginning of the first time step, as expected, but
the numerical solution deviates from the exact solution as the time t in-
creases. The difference between the two solutions at t � �t is due to the ap-
proximation at the first time step only and is called the local discretization
error. One would expect the situation to get worse with each step since the
second step uses the erroneous result of the first step as its starting point
and adds a second local discretization error on top of it, as shown in Figure
5–56. The accumulation of the local discretization errors continues with the
increasing number of time steps, and the total discretization error at any

T(xm, t)

Global
error

Local
error

Actual solution
T(x0, t)

T0

t0 t1 t2 t3

T1

T2

T3 Numerical
solution

Time

Step 1 Step 2 Step 3

FIGURE 5–56
The local and global discretization

errors of the finite difference
method at the third time step

at a specified nodal point.
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step is called the global or accumulated discretization error. Note that the
local and global discretization errors are identical for the first time step.
The global discretization error usually increases with the increasing num-
ber of steps, but the opposite may occur when the solution function
changes direction frequently, giving rise to local discretization errors of op-
posite signs, which tend to cancel each other.

To have an idea about the magnitude of the local discretization error,
consider the Taylor series expansion of the temperature at a specified nodal
point m about time ti, 

T(xm, ti � �t) � T(xm, ti) � �t � �t 2 � · · · (5-62)

The finite difference formulation of the time derivative at the same nodal
point is expressed as

� � (5-63)

or

T(xm, ti � �t) � T(xm, ti) � �t (5-64)

which resembles the Taylor series expansion terminated after the first two
terms. Therefore, the third and later terms in the Taylor series expansion
represent the error involved in the finite difference approximation. For a
sufficiently small time step, these terms decay rapidly as the order of de-
rivative increases, and their contributions become smaller and smaller. The
first term neglected in the Taylor series expansion is proportional to �t 2,
and thus the local discretization error of this approximation, which is the
error involved in each step, is also proportional to �t 2.

The local discretization error is the formulation error associated with a
single step and gives an idea about the accuracy of the method used. How-
ever, the solution results obtained at every step except the first one involve
the accumulated error up to that point, and the local error alone does not
have much significance. What we really need to know is the global dis-
cretization error. At the worst case, the accumulated discretization error
after I time steps during a time period t0 is i(�t)2 � (t0/�t)(�t)2 � t0�t,
which is proportional to �t. Thus, we conclude that the local discretization
error is proportional to the square of the step size �t 2 while the global dis-
cretization error is proportional to the step size �t itself. Therefore, the
smaller the mesh size (or the size of the time step in transient problems),
the smaller the error, and thus the more accurate is the approximation. For
example, halving the step size will reduce the global discretization error by
half. It should be clear from the discussions above that the discretization er-
ror can be minimized by decreasing the step size in space or time as much
as possible. The discretization error approaches zero as the difference
quantities such as �x and �t approach the differential quantities such as dx
and dt.

�T(xm, ti)
�t

T i�1
m � T i

m

�t

T(xm, ti � �t) � T(xm, ti)

�t

�T(xm, ti)
�t

�2T(xm, ti)

�t2

1
2

�T(xm, ti)
�t
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Round-off Error
If we had a computer that could retain an infinite number of digits for all
numbers, the difference between the exact solution and the approximate
(numerical) solution at any point would entirely be due to discretization er-
ror. But we know that every computer (or calculator) represents numbers
using a finite number of significant digits. The default value of the number
of significant digits for many computers is 7, which is referred to as single
precision. But the user may perform the calculations using 15 significant
digits for the numbers, if he or she wishes, which is referred to as double
precision. Of course, performing calculations in double precision will re-
quire more computer memory and a longer execution time.

In single precision mode with seven significant digits, a computer will
register the number 44444.666666 as 44444.67 or 44444.66, depending on
the method of rounding the computer uses. In the first case, the excess dig-
its are said to be rounded to the closest integer, whereas in the second case
they are said to be chopped off. Therefore, the numbers a � 44444.12345
and b � 44444.12032 are equivalent for a computer that performs calcula-
tions using seven significant digits. Such a computer would give a � b �
0 instead of the true value 0.00313.

The error due to retaining a limited number of digits during calculations
is called the round-off error. This error is random in nature and there is no
easy and systematic way of predicting it. It depends on the number of cal-
culations, the method of rounding off, the type of computer, and even the
sequence of calculations.

In algebra you learned that a � b � c � a � c � b, which seems quite
reasonable. But this is not necessarily true for calculations performed with
a computer, as demonstrated in Figure 5–57. Note that changing the se-
quence of calculations results in an error of 30.8 percent in just two opera-
tions. Considering that any significant problem involves thousands or even
millions of such operations performed in sequence, we realize that the ac-
cumulated round-off error has the potential to cause serious error without
giving any warning signs. Experienced programmers are very much aware
of this danger, and they structure their programs to prevent any buildup of
the round-off error. For example, it is much safer to multiply a number by
10 than to add it 10 times. Also, it is much safer to start any addition
process with the smallest numbers and continue with larger numbers. This
rule is particularly important when evaluating series with a large number of
terms with alternating signs.

The round-off error is proportional to the number of computations per-
formed during the solution. In the finite difference method, the number of
calculations increases as the mesh size or the time step size decreases.
Halving the mesh or time step size, for example, will double the number of
calculations and thus the accumulated round-off error.

Controlling the Error in Numerical Methods
The total error in any result obtained by a numerical method is the sum of
the discretization error, which decreases with decreasing step size, and the
round-off error, which increases with decreasing step size, as shown in Fig-
ure 5–58. Therefore, decreasing the step size too much in order to get more

Given:

a � 7777777

b � �7777776

c � 0.4444432

Find: D � a � b � c

E � a � c � b

Solution:

D � 7777777 � 7777776 � 0.4444432

� 1 � 0.4444432

� 1.444443 (Correct result)

E � 7777777 � 0.4444432 � 7777776

� 7777777 � 7777776

� 1.000000 (In error by 30.8%)

FIGURE 5–57
A simple arithmetic operation

performed with a computer
in single precision using seven

significant digits, which results in
30.8 percent error when the order

of operation is reversed.

Total
error

Discretization
error

Round-off error

Error

Step sizeOptimum
step size

FIGURE 5–58
As the mesh or time step size

decreases, the discretization error
decreases but the round-off

error increases.
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accurate results may actually backfire and give less accurate results be-
cause of a faster increase in the round-off error. We should be careful not to
let round-off error get out of control by avoiding a large number of compu-
tations with very small numbers.

In practice, we will not know the exact solution of the problem, and thus
we will not be able to determine the magnitude of the error involved in the
numerical method. Knowing that the global discretization error is propor-
tional to the step size is not much help either since there is no easy way of
determining the value of the proportionality constant. Besides, the global
discretization error alone is meaningless without a true estimate of the
round-off error. Therefore, we recommend the following practical proce-
dures to assess the accuracy of the results obtained by a numerical method.

• Start the calculations with a reasonable mesh size �x (and time step
size �t for transient problems) based on experience. Then repeat the
calculations using a mesh size of �x/2. If the results obtained by
halving the mesh size do not differ significantly from the results
obtained with the full mesh size, we conclude that the discretization
error is at an acceptable level. But if the difference is larger than we
can accept, then we have to repeat the calculations using a mesh size
�x/4 or even a smaller one at regions of high temperature gradients.
We continue in this manner until halving the mesh size does not cause
any significant change in the results, which indicates that the
discretization error is reduced to an acceptable level.

• Repeat the calculations using double precision holding the mesh size
(and the size of the time step in transient problems) constant. If the
changes are not significant, we conclude that the round-off error is not
a problem. But if the changes are too large to accept, then we may try
reducing the total number of calculations by increasing the mesh size
or changing the order of computations. But if the increased mesh size
gives unacceptable discretization errors, then we may have to find a
reasonable compromise.

It should always be kept in mind that the results obtained by any numer-
ical method may not reflect any trouble spots in certain problems that re-
quire special consideration such as hot spots or areas of high temperature
gradients. The results that seem quite reasonable overall may be in consid-
erable error at certain locations. This is another reason for always repeating
the calculations at least twice with different mesh sizes before accepting
them as the solution of the problem. Most commercial software packages
have built-in routines that vary the mesh size as necessary to obtain highly
accurate solutions. But it is a good engineering practice to be aware of any
potential pitfalls of numerical methods and to examine the results obtained
with a critical eye.

SUMMARY

Analytical solution methods are limited to highly simplified
problems in simple geometries, and it is often necessary to use

a numerical method to solve real world problems with com-
plicated geometries or nonuniform thermal conditions. The
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numerical finite difference method is based on replacing deriv-
atives by differences, and the finite difference formulation of a
heat transfer problem is obtained by selecting a sufficient num-
ber of points in the region, called the nodal points or nodes,
and writing energy balances on the volume elements centered
about the nodes.

For steady heat transfer, the energy balance on a volume el-
ement can be expressed in general as

Q
·

� g·Velement � 0

whether the problem is one-, two-, or three-dimensional. For
convenience in formulation, we always assume all heat trans-
fer to be into the volume element from all surfaces toward the
node under consideration, except for specified heat flux whose
direction is already specified. The finite difference formula-
tions for a general interior node under steady conditions are ex-
pressed for some geometries as follows:

One-dimensional 
steady conduction � � 0
in a plane wall:

Two-
dimensional 
steady 

Tleft � Ttop � Tright � Tbottom � 4Tnode � � 0
conduction 
in rectangular 
coordinates:

where �x is the nodal spacing for the plane wall and �x �
�y � l is the nodal spacing for the two-dimensional case. Insu-
lated boundaries can be viewed as mirrors in formulation, and
thus the nodes on insulated boundaries can be treated as inte-
rior nodes by using mirror images.

The finite difference formulation at node 0 at the left bound-
ary of a plane wall for steady one-dimensional heat conduction
can be expressed as

Q
·

left surface � kA � g·0(A�x/2) � 0

where A�x/2 is the volume of the volume, g·0 is the rate of heat
generation per unit volume at x � 0, and A is the heat transfer
area. The form of the first term depends on the boundary con-
dition at x � 0 (convection, radiation, specified heat flux, etc.).

The finite difference formulation of heat conduction prob-
lems usually results in a system of N algebraic equations in N
unknown nodal temperatures that need to be solved simultane-
ously. There are numerous systematic approaches available in
the literature. Several widely available equation solvers can

also be used to solve a system of equations simultaneously at
the press of a button.

The finite difference formulation of transient heat conduc-
tion problems is based on an energy balance that also accounts
for the variation of the energy content of the volume element
during a time interval �t. The heat transfer and heat generation
terms are expressed at the previous time step i in the explicit
method, and at the new time step i � 1 in the implicit method.
For a general node m, the finite difference formulations are
expressed as

Explicit
method:

Q
· i � G

·
� Velement C 

Implicit
method:

Q
· i�1 � G

·
� Velement C 

where and are the temperatures of node m at times
ti � i�t and ti�1 � (i � 1)�t, respectively, and � rep-
resents the temperature change of the node during the time in-
terval �t between the time steps i and i � 1. The explicit and
implicit formulations given here are quite general and can be
used in any coordinate system regardless of heat transfer being
one-, two-, or three-dimensional.

The explicit formulation of a general interior node for one-
and two-dimensional heat transfer in rectangular coordinates
can be expressed as

One-
dimen- � �( � ) � (1 � 2�) � �
sional case:

Two-
� �( � � � )

dimen-
sional 

� (1 � 4�) � �
case:

where

� �

is the dimensionless mesh Fourier number and � � k/C is the
thermal diffusivity of the medium.

The implicit method is inherently stable, and any value of �t
can be used with that method as the time step. The largest value
of the time step �t in the explicit method is limited by the sta-
bility criterion, expressed as: the coefficients of all in the

expressions (called the primary coefficients) must be
greater than or equal to zero for all nodes m. The maximum
value of �t is determined by applying the stability criterion to
the equation with the smallest primary coefficient since it is the

T i�1
m

T i
m

��t
�x2

g· i
nodel 2

k
T i

node

T i
bottomT i

rightT i
topT i

leftT i�1
node

g· i
m�x2

k
T i

mT i
m�1T i

m�1T i�1
m

T i
mT i�1

m

T i�1
mT i

m

T i�1
m � T i

m

�t
i�1
element�

All sides

T i�1
m � T i

m

�t
i
element�

All sides

T1 � T0

�x

g·nodel 2

k

g·m
k

Tm�1 � 2Tm � Tm�1

(�x)2

�
All sides
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most restrictive. For problems with specified temperatures or
heat fluxes at all the boundaries, the stability criterion can be

expressed as � � for one-dimensional problems and � � for
the two-dimensional problems in rectangular coordinates.

1
4

1
2
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PROBLEMS*

Why Numerical Methods?

5–1C What are the limitations of the analytical solution
methods?

5–2C How do numerical solution methods differ from ana-
lytical ones? What are the advantages and disadvantages of
numerical and analytical methods?

5–3C What is the basis of the energy balance method? How
does it differ from the formal finite difference method? For a
specified nodal network, will these two methods result in the
same or a different set of equations?

5–4C Consider a heat conduction problem that can be solved
both analytically, by solving the governing differential equa-
tion and applying the boundary conditions, and numerically,
by a software package available on your computer. Which

approach would you use to solve this problem? Explain your
reasoning.

5–5C Two engineers are to solve an actual heat transfer
problem in a manufacturing facility. Engineer A makes the nec-
essary simplifying assumptions and solves the problem
analytically, while engineer B solves it numerically using a
powerful software package. Engineer A claims he solved
the problem exactly and thus his results are better, while engi-
neer B claims that he used a more realistic model and thus his
results are better. To resolve the dispute, you are asked to solve
the problem experimentally in a lab. Which engineer do you
think the experiments will prove right? Explain.

Finite Difference Formulation of Differential Equations

5–6C Define these terms used in the finite difference formu-
lation: node, nodal network, volume element, nodal spacing,
and difference equation.

5–7 Consider three consecutive nodes n � 1, n, and n � 1 in
a plane wall. Using the finite difference form of the first deriv-
ative at the midpoints, show that the finite difference form of
the second derivative can be expressed as

� 0
Tn�1 � 2Tn � Tn�1

�x2

*Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the SI users can ignore them.
Problems with an EES-CD icon are solved using EES, and
complete solutions together with parametric studies are included
on the enclosed CD. Problems with a computer-EES icon are
comprehensive in nature, and are intended to be solved with a
computer, preferably using the EES software that accompanies
this text.
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5–8 The finite difference formulation of steady two-
dimensional heat conduction in a medium with heat generation
and constant thermal conductivity is given by

�

� � 0

in rectangular coordinates. Modify this relation for the three-
dimensional case.

5–9 Consider steady one-dimensional heat conduction in a
plane wall with variable heat generation and constant thermal
conductivity. The nodal network of the medium consists of
nodes 0, 1, 2, 3, and 4 with a uniform nodal spacing of �x.
Using the finite difference form of the first derivative (not the
energy balance approach), obtain the finite difference formula-
tion of the boundary nodes for the case of uniform heat flux q·0
at the left boundary (node 0) and convection at the right bound-
ary (node 4) with a convection coefficient of h and an ambient
temperature of T�.

5–10 Consider steady one-dimensional heat conduction in a
plane wall with variable heat generation and constant thermal
conductivity. The nodal network of the medium consists of

nodes 0, 1, 2, 3, 4, and 5 with a uniform nodal spacing of �x.
Using the finite difference form of the first derivative (not the
energy balance approach), obtain the finite difference formula-
tion of the boundary nodes for the case of insulation at the left
boundary (node 0) and radiation at the right boundary (node 5)
with an emissivity of 	 and surrounding temperature of Tsurr.

One-Dimensional Steady Heat Conduction

5–11C Explain how the finite difference form of a heat con-
duction problem is obtained by the energy balance method.

5–12C In the energy balance formulation of the finite differ-
ence method, it is recommended that all heat transfer at the
boundaries of the volume element be assumed to be into the
volume element even for steady heat conduction. Is this a valid
recommendation even though it seems to violate the conserva-
tion of energy principle?

5–13C How is an insulated boundary handled in the finite
difference formulation of a problem? How does a symmetry
line differ from an insulated boundary in the finite difference
formulation?

5–14C How can a node on an insulated boundary be treated
as an interior node in the finite difference formulation of a
plane wall? Explain.

5–15C Consider a medium in which the finite difference
formulation of a general interior node is given in its simplest
form as

� � 0

(a) Is heat transfer in this medium steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?
(d) Is the nodal spacing constant or variable?
(e) Is the thermal conductivity of the medium constant or

variable?

5–16 Consider steady heat conduction in a plane wall whose
left surface (node 0) is maintained at 30°C while the right sur-
face (node 8) is subjected to a heat flux of 800 W/m2. Express
the finite difference formulation of the boundary nodes 0 and 8

g·m

k
Tm�1 � 2Tm � Tm�1

�x2

g·m, n

k

Tm, n�1 � 2Tm, n � Tm, n�1

�y2

Tm�1, n � 2Tm, n � Tm�1, n

�x2

n – 1 n n + 1

Tn – 1

T(x)

∆x

Tn + 1

Tn

∆x

x

FIGURE P5–7
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ε
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for the case of no heat generation. Also obtain the finite dif-
ference formulation for the rate of heat transfer at the left
boundary.

5–17 Consider steady heat conduction in a plane wall with
variable heat generation and constant thermal conductivity.
The nodal network of the medium consists of nodes 0, 1, 2, 3,
and 4 with a uniform nodal spacing of �x. Using the energy
balance approach, obtain the finite difference formulation of
the boundary nodes for the case of uniform heat flux q·0 at the
left boundary (node 0) and convection at the right boundary
(node 4) with a convection coefficient of h and an ambient
temperature of T�.

5–18 Consider steady one-dimensional heat conduction in a
plane wall with variable heat generation and constant thermal
conductivity. The nodal network of the medium consists of
nodes 0, 1, 2, 3, 4, and 5 with a uniform nodal spacing of �x.
Using the energy balance approach, obtain the finite difference
formulation of the boundary nodes for the case of insulation at
the left boundary (node 0) and radiation at the right boundary
(node 5) with an emissivity of 	 and surrounding temperature
of Tsurr.

5–19 Consider steady one-dimensional heat conduction in a
plane wall with variable heat generation and constant thermal
conductivity. The nodal network of the medium consists of
nodes 0, 1, 2, 3, 4, and 5 with a uniform nodal spacing of �x.
The temperature at the right boundary (node 5) is specified.
Using the energy balance approach, obtain the finite difference
formulation of the boundary node 0 on the left boundary for the
case of combined convection, radiation, and heat flux at the left
boundary with an emissivity of 	, convection coefficient of h,
ambient temperature of T�, surrounding temperature of Tsurr,
and uniform heat flux of q·0. Also, obtain the finite difference
formulation for the rate of heat transfer at the right boundary.

5–20 Consider steady one-dimensional heat conduction in a
composite plane wall consisting of two layers A and B in per-
fect contact at the interface. The wall involves no heat genera-
tion. The nodal network of the medium consists of nodes 0, 1
(at the interface), and 2 with a uniform nodal spacing of �x.
Using the energy balance approach, obtain the finite difference
formulation of this problem for the case of insulation at the left

boundary (node 0) and radiation at the right boundary (node 2)
with an emissivity of 	 and surrounding temperature of Tsurr.

5–21 Consider steady one-dimensional heat conduction in a
plane wall with variable heat generation and variable thermal
conductivity. The nodal network of the medium consists of
nodes 0, 1, and 2 with a uniform nodal spacing of �x. Using
the energy balance approach, obtain the finite difference for-
mulation of this problem for the case of specified heat flux q·0
to the wall and convection at the left boundary (node 0) with a
convection coefficient of h and ambient temperature of T�, and
radiation at the right boundary (node 2) with an emissivity of 	
and surrounding surface temperature of Tsurr.

5–22 Consider steady one-dimensional heat conduction in a
pin fin of constant diameter D with constant thermal conduc-
tivity. The fin is losing heat by convection to the ambient air at
T� with a heat transfer coefficient of h. The nodal network of
the fin consists of nodes 0 (at the base), 1 (in the middle), and 2
(at the fin tip) with a uniform nodal spacing of �x. Using the
energy balance approach, obtain the finite difference formula-
tion of this problem to determine T1 and T2 for the case of spec-
ified temperature at the fin base and negligible heat transfer at
the fin tip. All temperatures are in °C.

5–23 Consider steady one-dimensional heat conduction in a
pin fin of constant diameter D with constant thermal conduc-
tivity. The fin is losing heat by convection to the ambient air
at T� with a convection coefficient of h, and by radiation to
the surrounding surfaces at an average temperature of Tsurr.
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The nodal network of the fin consists of nodes 0 (at the base),
1 (in the middle), and 2 (at the fin tip) with a uniform nodal
spacing of �x. Using the energy balance approach, obtain the
finite difference formulation of this problem to determine
T1 and T2 for the case of specified temperature at the fin base
and negligible heat transfer at the fin tip. All temperatures
are in °C.

5–24 Consider a large uranium plate of thickness 5 cm and
thermal conductivity k � 28 W/m · °C in which heat is gener-
ated uniformly at a constant rate of g· � 6 � 105 W/m3. One
side of the plate is insulated while the other side is subjected
to convection to an environment at 30°C with a heat transfer
coefficient of h � 60 W/m2 · °C. Considering six equally
spaced nodes with a nodal spacing of 1 cm, (a) obtain the finite
difference formulation of this problem and (b) determine the
nodal temperatures under steady conditions by solving those
equations.

5–25 Consider an aluminum alloy fin (k � 180 W/m · °C) of
triangular cross section whose length is L � 5 cm, base thick-
ness is b � 1 cm, and width w in the direction normal to the
plane of paper is very large. The base of the fin is maintained
at a temperature of T0 � 180°C. The fin is losing heat by con-
vection to the ambient air at T� � 25°C with a heat transfer
coefficient of h � 25 W/m2 · °C and by radiation to the sur-
rounding surfaces at an average temperature of Tsurr � 290 K.
Using the finite difference method with six equally spaced
nodes along the fin in the x-direction, determine (a) the tem-
peratures at the nodes and (b) the rate of heat transfer from the
fin for w � 1 m. Take the emissivity of the fin surface to be 0.9
and assume steady one-dimensional heat transfer in the fin.

5–26 Reconsider Problem 5–25. Using EES (or other)
software, investigate the effect of the fin base

temperature on the fin tip temperature and the rate of heat
transfer from the fin. Let the temperature at the fin base vary

from 100°C to 200°C. Plot the fin tip temperature and the rate
of heat transfer as a function of the fin base temperature, and
discuss the results.

5–27 Consider a large plane wall of thickness L � 0.4 m,
thermal conductivity k � 2.3 W/m · °C, and surface area
A � 20 m2. The left side of the wall is maintained at a constant
temperature of 80°C, while the right side loses heat by con-
vection to the surrounding air at T� � 15°C with a heat trans-
fer coefficient of h � 24 W/m2 · °C. Assuming steady one-
dimensional heat transfer and taking the nodal spacing to be
10 cm, (a) obtain the finite difference formulation for all nodes,
(b) determine the nodal temperatures by solving those equa-
tions, and (c) evaluate the rate of heat transfer through the wall.

5–28 Consider the base plate of a 800-W household iron hav-
ing a thickness of L � 0.6 cm, base area of A � 160 cm2, and
thermal conductivity of k � 20 W/m · °C. The inner surface of
the base plate is subjected to uniform heat flux generated by
the resistance heaters inside. When steady operating conditions
are reached, the outer surface temperature of the plate is mea-
sured to be 85°C. Disregarding any heat loss through the upper
part of the iron and taking the nodal spacing to be 0.2 cm,
(a) obtain the finite difference formulation for the nodes and
(b) determine the inner surface temperature of the plate by
solving those equations. Answer: (b) 100°C

5–29 Consider a large plane wall of thickness L � 0.3 m,
thermal conductivity k � 2.5 W/m · °C, and surface area
A � 12 m2. The left side of the wall is subjected to a heat flux
of q·0 � 700 W/m2 while the temperature at that surface is mea-
sured to be T0 � 60°C. Assuming steady one-dimensional heat
transfer and taking the nodal spacing to be 6 cm, (a) obtain the
finite difference formulation for the six nodes and (b) deter-
mine the temperature of the other surface of the wall by solv-
ing those equations.

5–30E A large steel plate having a thickness of L � 5 in.,
thermal conductivity of k � 7.2 Btu/h · ft · °F, and an emissiv-
ity of 	 � 0.6 is lying on the ground. The exposed surface of
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the plate exchanges heat by convection with the ambient air
at T� � 80°F with an average heat transfer coefficient of
h � 3.5 Btu/h · ft2 · °F as well as by radiation with the open sky
at an equivalent sky temperature of Tsky � 510 R. The ground
temperature below a certain depth (say, 3 ft) is not affected by
the weather conditions outside and remains fairly constant at
50°F at that location. The thermal conductivity of the soil can
be taken to be ksoil � 0.49 Btu/h · ft · °F, and the steel plate can
be assumed to be in perfect contact with the ground. Assuming
steady one-dimensional heat transfer and taking the nodal
spacings to be 1 in. in the plate and 0.6 ft in the ground, (a) ob-
tain the finite difference formulation for all 11 nodes shown in
Figure P5–30E and (b) determine the top and bottom surface
temperatures of the plate by solving those equations.

5–31E Repeat Problem 5–30E by disregarding radiation heat
transfer from the upper surface. Answers: (b) 78.7°F, 78.4°F

5–32 Consider a stainless steel spoon (k � 15.1 W/m · C,
	 � 0.6) that is partially immersed in boiling water at 95°C in
a kitchen at 25°C. The handle of the spoon has a cross section
of about 0.2 cm � 1 cm and extends 18 cm in the air from the
free surface of the water. The spoon loses heat by convection
to the ambient air with an average heat transfer coefficient of
h � 13 W/m2 · °C as well as by radiation to the surrounding
surfaces at an average temperature of Tsurr � 295 K. Assuming
steady one-dimensional heat transfer along the spoon and tak-
ing the nodal spacing to be 3 cm, (a) obtain the finite difference
formulation for all nodes, (b) determine the temperature of the
tip of the spoon by solving those equations, and (c) determine
the rate of heat transfer from the exposed surfaces of the spoon.

5–33 Repeat Problem 5–32 using a nodal spacing of 1.5 cm.

5–34 Reconsider Problem 5–33. Using EES (or other)
software, investigate the effects of the thermal

conductivity and the emissivity of the spoon material on the
temperature at the spoon tip and the rate of heat transfer from
the exposed surfaces of the spoon. Let the thermal conductiv-
ity vary from 10 W/m · °C to 400 W/m · °C, and the emissivity
from 0.1 to 1.0. Plot the spoon tip temperature and the heat
transfer rate as functions of thermal conductivity and emissiv-
ity, and discuss the results.

5–35 One side of a 2-m-high and 3-m-wide vertical plate
at 130°C is to be cooled by attaching aluminum fins (k �
237 W/m · °C) of rectangular profile in an environment at
35°C. The fins are 2 cm long, 0.3 cm thick, and 0.4 cm apart.
The heat transfer coefficient between the fins and the sur-
rounding air for combined convection and radiation is esti-
mated to be 30 W/m2 · °C. Assuming steady one-dimensional
heat transfer along the fin and taking the nodal spacing to be
0.5 cm, determine (a) the finite difference formulation of this
problem, (b) the nodal temperatures along the fin by solving
these equations, (c) the rate of heat transfer from a single fin,
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and (d) the rate of heat transfer from the entire finned surface
of the plate.

5–36 A hot surface at 100°C is to be cooled by attach-
ing 3-cm-long, 0.25-cm-diameter aluminum pin fins (k �
237 W/m · °C) with a center-to-center distance of 0.6 cm. The
temperature of the surrounding medium is 30°C, and the com-
bined heat transfer coefficient on the surfaces is 35 W/m2 · °C.
Assuming steady one-dimensional heat transfer along the fin
and taking the nodal spacing to be 0.5 cm, determine (a) the fi-
nite difference formulation of this problem, (b) the nodal tem-
peratures along the fin by solving these equations, (c) the rate
of heat transfer from a single fin, and (d) the rate of heat trans-
fer from a 1-m � 1-m section of the plate.

5–37 Repeat Problem 5–36 using copper fins (k � 386
W/m · °C) instead of aluminum ones.

Answers: (b) 98.6°C, 97.5°C, 96.7°C, 96.0°C, 95.7°C, 95.5°C

5–38 Two 3-m-long and 0.4-cm-thick cast iron (k � 52
W/m · °C, 	 � 0.8) steam pipes of outer diameter 10 cm are
connected to each other through two 1-cm-thick flanges of
outer diameter 20 cm, as shown in the figure. The steam flows
inside the pipe at an average temperature of 200°C with a heat
transfer coefficient of 180 W/m2 · °C. The outer surface of the
pipe is exposed to convection with ambient air at 8°C with a
heat transfer coefficient of 25 W/m2 · °C as well as radiation
with the surrounding surfaces at an average temperature of
Tsurr � 290 K. Assuming steady one-dimensional heat conduc-
tion along the flanges and taking the nodal spacing to be 1 cm
along the flange (a) obtain the finite difference formulation for
all nodes, (b) determine the temperature at the tip of the flange
by solving those equations, and (c) determine the rate of heat
transfer from the exposed surfaces of the flange.

5–39 Reconsider Problem 5–38. Using EES (or other)
software, investigate the effects of the steam tem-

perature and the outer heat transfer coefficient on the flange tip
temperature and the rate of heat transfer from the exposed sur-
faces of the flange. Let the steam temperature vary from 150°C
to 300°C and the heat transfer coefficient from 15 W/m2 · °C to
60 W/m2 · °C. Plot the flange tip temperature and the heat
transfer rate as functions of steam temperature and heat trans-
fer coefficient, and discuss the results.

5–40 Using EES (or other) software, solve these sys-
tems of algebraic equations.

(a) 3x1 � x2 � 3x3 � 0

�x1 � 2x2 � x3 � 3

2x1 � x2 � x3 � 2

(b) 4x1 � 2x � 0.5x3 � �2

x � x2 � x3 � 11.964

x1 � x2 � x3 � 3
Answers: (a) x1 � 2, x2 � 3, x3 � �1, (b) x1 � 2.33, x2 � 2.29,

x3 � �1.62

5–41 Using EES (or other) software, solve these sys-
tems of algebraic equations.

(a) 3x1 � 2x2 � x3 � x4 � 6

x1 � 2x2 � x4 � �3

�2x1 � x2 � 3x3 � x4 � 2

3x2 � x3 � 4x4 � �6

(b) 3x1 � x � 2x3 � 8

�x � 3x2 � 2x3 � �6.293

2x1 � x � 4x3 � �124
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5–42 Using EES (or other) software, solve these sys-
tems of algebraic equations.

(a) 4x1 � x2 � 2x3 � x4 � �6

x1 � 3x2 � x3 � 4x4 � �1

�x1 � 2x2 � 5x4 � 5

2x2 � 4x3 � 3x4 � �5

(b) 2x1 � x � 2x3 � x4 � 1

x � 4x2 � 2x � 2x4 � �3

�x1 � x � 5x3 � 10

3x1 � x � 8x4 � 15

Two-Dimensional Steady Heat Conduction

5–43C Consider a medium in which the finite difference
formulation of a general interior node is given in its simplest
form as

Tleft � Ttop � Tright � Tbottom � 4Tnode � � 0

(a) Is heat transfer in this medium steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?
(d) Is the nodal spacing constant or variable?
(e) Is the thermal conductivity of the medium constant or

variable?

5–44C Consider a medium in which the finite difference
formulation of a general interior node is given in its simplest
form as

Tnode � (Tleft � Ttop � Tright � Tbottom)/4

(a) Is heat transfer in this medium steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?
(d) Is the nodal spacing constant or variable?
(e) Is the thermal conductivity of the medium constant or

variable?

5–45C What is an irregular boundary? What is a practical
way of handling irregular boundary surfaces with the finite dif-
ference method?

5–46 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The tem-
peratures at the selected nodes and the thermal conditions at
the boundaries are as shown. The thermal conductivity of the
body is k � 45 W/m · °C, and heat is generated in the body uni-
formly at a rate of g· � 6 � 106 W/m3. Using the finite differ-
ence method with a mesh size of �x � �y � 5.0 cm, determine
(a) the temperatures at nodes 1, 2, and 3 and (b) the rate of heat
loss from the bottom surface through a 1-m-long section of the
body.

5–47 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The mea-
sured temperatures at selected points of the outer surfaces are
as shown. The thermal conductivity of the body is k � 45
W/m · °C, and there is no heat generation. Using the finite dif-
ference method with a mesh size of �x � �y � 2.0 cm, deter-
mine the temperatures at the indicated points in the medium.
Hint: Take advantage of symmetry.

5–48 Consider steady two-dimensional heat transfer in a long
solid bar whose cross section is given in the figure. The mea-
sured temperatures at selected points of the outer surfaces are
as shown. The thermal conductivity of the body is k � 20
W/m · °C, and there is no heat generation. Using the finite dif-
ference method with a mesh size of �x � �y � 1.0 cm, deter-
mine the temperatures at the indicated points in the medium.

Answers: T1 � 185°C, T2 � T3 � T4 � 190°C

5–49 Starting with an energy balance on a volume element,
obtain the steady two-dimensional finite difference equation
for a general interior node in rectangular coordinates for T(x, y)
for the case of variable thermal conductivity and uniform heat
generation.
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5–50 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The tem-
peratures at the selected nodes and the thermal conditions on
the boundaries are as shown. The thermal conductivity of the
body is k � 180 W/m · °C, and heat is generated in the body
uniformly at a rate of g· � 107 W/m3. Using the finite difference
method with a mesh size of �x � �y � 10 cm, determine
(a) the temperatures at nodes 1, 2, 3, and 4 and (b) the rate
of heat loss from the top surface through a 1-m-long section of
the body.

5–51 Reconsider Problem 5–50. Using EES (or other)
software, investigate the effects of the thermal

conductivity and the heat generation rate on the temperatures at
nodes 1 and 3, and the rate of heat loss from the top surface.
Let the thermal conductivity vary from 10 W/m · °C to 400
W/m · °C and the heat generation rate from 105 W/m3 to 108

W/m3. Plot the temperatures at nodes 1 and 3, and the rate of
heat loss as functions of thermal conductivity and heat genera-
tion rate, and discuss the results.

5–52 Consider steady two-dimensional heat transfer in a long
solid bar whose cross section is given in the figure. The mea-
sured temperatures at selected points on the outer surfaces are
as shown. The thermal conductivity of the body is k � 20
W/m · °C, and there is no heat generation. Using the finite dif-
ference method with a mesh size of �x � �y � 1.0 cm, deter-
mine the temperatures at the indicated points in the medium.
Hint: Take advantage of symmetry.

Answers: (b) T1 � T4 � 143°C, T2 � T3 � 136°C

5–53 Consider steady two-dimensional heat transfer in an
L-shaped solid body whose cross section is given in the figure.
The thermal conductivity of the body is k � 45 W/m · °C, and
heat is generated in the body at a rate of g· � 5 � 106 W/m3.
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The right surface of the body is insulated, and the bottom sur-
face is maintained at a uniform temperature of 120°C. The
entire top surface is subjected to convection with ambient air
at T� � 30°C with a heat transfer coefficient of h � 55
W/m2 · °C, and the left surface is subjected to heat flux at a uni-
form rate of q·L � 8000 W/m2. The nodal network of the prob-
lem consists of 13 equally spaced nodes with �x � �y �
1.5 cm. Five of the nodes are at the bottom surface and thus
their temperatures are known. (a) Obtain the finite difference
equations at the remaining eight nodes and (b) determine the
nodal temperatures by solving those equations.

5–54E Consider steady two-dimensional heat transfer in a
long solid bar of square cross section in which heat is gener-
ated uniformly at a rate of g· � 0.19 � 105 Btu/h · ft3. The cross
section of the bar is 0.4 ft � 0.4 ft in size, and its thermal con-
ductivity is k � 16 Btu/h · ft · °F. All four sides of the bar are
subjected to convection with the ambient air at T� � 70°F with
a heat transfer coefficient of h � 7.9 Btu/h · ft2 · °F. Using the
finite difference method with a mesh size of �x � �y � 0.2 ft,
determine (a) the temperatures at the nine nodes and (b) the
rate of heat loss from the bar through a 1-ft-long section.

Answer: (b) 3040 Btu/h

5–55 Hot combustion gases of a furnace are flowing through
a concrete chimney (k � 1.4 W/m · °C) of rectangular cross

section. The flow section of the chimney is 20 cm � 40 cm,
and the thickness of the wall is 10 cm. The average temperature
of the hot gases in the chimney is Ti � 280°C, and the average
convection heat transfer coefficient inside the chimney is hi �
75 W/m2 · °C. The chimney is losing heat from its outer surface
to the ambient air at To � 15°C by convection with a heat
transfer coefficient of ho � 18 W/m2 · °C and to the sky by
radiation. The emissivity of the outer surface of the wall is
	 � 0.9, and the effective sky temperature is estimated to be
250 K. Using the finite difference method with �x � �y �
10 cm and taking full advantage of symmetry, (a) obtain the
finite difference formulation of this problem for steady two-
dimensional heat transfer, (b) determine the temperatures at the
nodal points of a cross section, and (c) evaluate the rate of heat
loss for a 1-m-long section of the chimney.

5–56 Repeat Problem 5–55 by disregarding radiation heat
transfer from the outer surfaces of the chimney.

5–57 Reconsider Problem 5–55. Using EES (or other)
software, investigate the effects of hot-gas tem-

perature and the outer surface emissivity on the temperatures at
the outer corner of the wall and the middle of the inner surface
of the right wall, and the rate of heat loss. Let the temperature
of the hot gases vary from 200°C to 400°C and the emissivity
from 0.1 to 1.0. Plot the temperatures and the rate of heat loss
as functions of the temperature of the hot gases and the emis-
sivity, and discuss the results.

5–58 Consider a long concrete dam (k � 0.6 W/m · °C,
�s � 0.7 m2/s) of triangular cross section whose

exposed surface is subjected to solar heat flux of q·s �
800 W/m2 and to convection and radiation to the environ-
ment at 25°C with a combined heat transfer coefficient of 30
W/m2 · °C. The 2-m-high vertical section of the dam is sub-
jected to convection by water at 15°C with a heat transfer
coefficient of 150 W/m2 · °C, and heat transfer through the
2-m-long base is considered to be negligible. Using the finite
difference method with a mesh size of �x � �y � 1 m and
assuming steady two-dimensional heat transfer, determine the
temperature of the top, middle, and bottom of the exposed sur-
face of the dam. Answers: 21.3°C, 43.2°C, 43.6°C
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5–59E Consider steady two-dimensional heat transfer in a
V-grooved solid body whose cross section is given in the fig-
ure. The top surfaces of the groove are maintained at 32°F
while the bottom surface is maintained at 212°F. The side sur-
faces of the groove are insulated. Using the finite difference
method with a mesh size of �x � �y � 1 ft and taking advan-
tage of symmetry, determine the temperatures at the middle of
the insulated surfaces.

5–60 Reconsider Problem 5–59E. Using EES (or
other) software, investigate the effects of the

temperatures at the top and bottom surfaces on the temperature
in the middle of the insulated surface. Let the temperatures at
the top and bottom surfaces vary from 32°F to 212°F. Plot the
temperature in the middle of the insulated surface as functions
of the temperatures at the top and bottom surfaces, and discuss
the results.

5–61 Consider a long solid bar whose thermal conductivity is
k � 12 W/m · °C and whose cross section is given in the figure.
The top surface of the bar is maintained at 50°C while the bot-
tom surface is maintained at 120°C. The left surface is insu-
lated and the remaining three surfaces are subjected to
convection with ambient air at T� � 25°C with a heat transfer
coefficient of h � 30 W/m2 · °C. Using the finite difference
method with a mesh size of �x � �y � 10 cm, (a) obtain the
finite difference formulation of this problem for steady two-

dimensional heat transfer and (b) determine the unknown nodal
temperatures by solving those equations.

Answers: (b) 85.7°C, 86.4°C, 87.6°C

5–62 Consider a 5-m-long constantan block (k � 23
W/m · °C) 30 cm high and 50 cm wide. The block is com-
pletely submerged in iced water at 0°C that is well stirred, and
the heat transfer coefficient is so high that the temperatures on
both sides of the block can be taken to be 0°C. The bottom sur-
face of the bar is covered with a low-conductivity material so
that heat transfer through the bottom surface is negligible. The
top surface of the block is heated uniformly by a 6-kW resis-
tance heater. Using the finite difference method with a mesh
size of �x � �y � 10 cm and taking advantage of symmetry,
(a) obtain the finite difference formulation of this problem for
steady two-dimensional heat transfer, (b) determine the un-
known nodal temperatures by solving those equations, and
(c) determine the rate of heat transfer from the block to the iced
water.

Transient Heat Conduction

5–63C How does the finite difference formulation of 
a transient heat conduction problem differ from that of a
steady heat conduction problem? What does the term
A�xC( � )/�t represent in the transient finite differ-
ence formulation?

5–64C What are the two basic methods of solution of tran-
sient problems based on finite differencing? How do heat
transfer terms in the energy balance formulation differ in the
two methods?

5–65C The explicit finite difference formulation of a general
interior node for transient heat conduction in a plane wall is
given by

� 2 � � �

Obtain the finite difference formulation for the steady case by
simplifying the relation above.
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5–66C The explicit finite difference formulation of a general
interior node for transient two-dimensional heat conduction is
given by

� �( � � � )

� (1 � 4�) � �

Obtain the finite difference formulation for the steady case by
simplifying the relation above.

5–67C Is there any limitation on the size of the time step �t
in the solution of transient heat conduction problems using
(a) the explicit method and (b) the implicit method?

5–68C Express the general stability criterion for the explicit
method of solution of transient heat conduction problems.

5–69C Consider transient one-dimensional heat conduction
in a plane wall that is to be solved by the explicit method. If
both sides of the wall are at specified temperatures, express the
stability criterion for this problem in its simplest form.

5–70C Consider transient one-dimensional heat conduction
in a plane wall that is to be solved by the explicit method.
If both sides of the wall are subjected to specified heat 
flux, express the stability criterion for this problem in its sim-
plest form.

5–71C Consider transient two-dimensional heat conduction
in a rectangular region that is to be solved by the explicit
method. If all boundaries of the region are either insulated or at
specified temperatures, express the stability criterion for this
problem in its simplest form.

5–72C The implicit method is unconditionally stable and
thus any value of time step �t can be used in the solution of
transient heat conduction problems. To minimize the computa-
tion time, someone suggests using a very large value of �t
since there is no danger of instability. Do you agree with this
suggestion? Explain.

5–73 Consider transient heat conduction in a plane wall
whose left surface (node 0) is maintained at 50°C while the
right surface (node 6) is subjected to a solar heat flux of 600
W/m2. The wall is initially at a uniform temperature of 50°C.
Express the explicit finite difference formulation of the bound-
ary nodes 0 and 6 for the case of no heat generation. Also,
obtain the finite difference formulation for the total amount
of heat transfer at the left boundary during the first three
time steps.

5–74 Consider transient heat conduction in a plane wall with
variable heat generation and constant thermal conductivity.
The nodal network of the medium consists of nodes 0, 1, 2, 3,
and 4 with a uniform nodal spacing of �x. The wall is initially
at a specified temperature. Using the energy balance approach,
obtain the explicit finite difference formulation of the boundary
nodes for the case of uniform heat flux q·0 at the left boundary

(node 0) and convection at the right boundary (node 4) with a
convection coefficient of h and an ambient temperature of T�.
Do not simplify.

5–75 Repeat Problem 5–74 for the case of implicit formula-
tion.

5–76 Consider transient heat conduction in a plane wall with
variable heat generation and constant thermal conductivity.
The nodal network of the medium consists of nodes 0, 1, 2,
3, 4, and 5 with a uniform nodal spacing of �x. The wall is ini-
tially at a specified temperature. Using the energy balance ap-
proach, obtain the explicit finite difference formulation of the
boundary nodes for the case of insulation at the left boundary
(node 0) and radiation at the right boundary (node 5) with an
emissivity of 	 and surrounding temperature of Tsurr.

5–77 Consider transient heat conduction in a plane wall with
variable heat generation and constant thermal conductivity.
The nodal network of the medium consists of nodes 0, 1, 2, 3,
and 4 with a uniform nodal spacing of �x. The wall is initially
at a specified temperature. The temperature at the right bound-
ary (node 4) is specified. Using the energy balance approach,
obtain the explicit finite difference formulation of the boundary
node 0 for the case of combined convection, radiation, and heat
flux at the left boundary with an emissivity of 	, convection co-
efficient of h, ambient temperature of T�, surrounding temper-
ature of Tsurr, and uniform heat flux of q·0 toward the wall. Also,
obtain the finite difference formulation for the total amount of
heat transfer at the right boundary for the first 20 time steps.
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5–78 Starting with an energy balance on a volume element,
obtain the two-dimensional transient explicit finite difference
equation for a general interior node in rectangular coordinates
for T(x, y, t) for the case of constant thermal conductivity and
no heat generation.

5–79 Starting with an energy balance on a volume element,
obtain the two-dimensional transient implicit finite difference
equation for a general interior node in rectangular coordinates
for T(x, y, t) for the case of constant thermal conductivity and
no heat generation.

5–80 Starting with an energy balance on a disk volume ele-
ment, derive the one-dimensional transient explicit finite dif-
ference equation for a general interior node for T(z, t) in a
cylinder whose side surface is insulated for the case of constant
thermal conductivity with uniform heat generation.

5–81 Consider one-dimensional transient heat conduction in
a composite plane wall that consists of two layers A and B with
perfect contact at the interface. The wall involves no heat gen-
eration and initially is at a specified temperature. The nodal
network of the medium consists of nodes 0, 1 (at the interface),
and 2 with a uniform nodal spacing of �x. Using the energy
balance approach, obtain the explicit finite difference formula-
tion of this problem for the case of insulation at the left bound-
ary (node 0) and radiation at the right boundary (node 2) with
an emissivity of 	 and surrounding temperature of Tsurr.

5–82 Consider transient one-dimensional heat conduction in
a pin fin of constant diameter D with constant thermal conduc-
tivity. The fin is losing heat by convection to the ambient air at
T� with a heat transfer coefficient of h and by radiation to the
surrounding surfaces at an average temperature of Tsurr. The
nodal network of the fin consists of nodes 0 (at the base), 1 (in
the middle), and 2 (at the fin tip) with a uniform nodal spacing
of �x. Using the energy balance approach, obtain the explicit
finite difference formulation of this problem for the case of a
specified temperature at the fin base and negligible heat trans-
fer at the fin tip.

5–83 Repeat Problem 5–82 for the case of implicit
formulation.

5–84 Consider a large uranium plate of thickness L � 8 cm,
thermal conductivity k � 28 W/m · °C, and thermal diffusivity
� � 12.5 � 10�6 m2/s that is initially at a uniform temperature
of 100°C. Heat is generated uniformly in the plate at a constant
rate of g· � 106 W/m3. At time t � 0, the left side of the plate is
insulated while the other side is subjected to convection with
an environment at T� � 20°C with a heat transfer coefficient of
h � 35 W/m2 · °C. Using the explicit finite difference approach
with a uniform nodal spacing of �x � 2 cm, determine (a) the
temperature distribution in the plate after 5 min and (b) how
long it will take for steady conditions to be reached in the plate.

5–85 Reconsider Problem 5–84. Using EES (or other)
software, investigate the effect of the cooling

time on the temperatures of the left and right sides of the plate.
Let the time vary from 5 min to 60 min. Plot the temperatures
at the left and right surfaces as a function of time, and discuss
the results.

5–86 Consider a house whose south wall consists of a 30-cm-
thick Trombe wall whose thermal conductivity is k � 0.70
W/m · °C and whose thermal diffusivity is � � 0.44 � 10�6

m2/s. The variations of the ambient temperature Tout and the
solar heat flux q·solar incident on a south-facing vertical surface
throughout the day for a typical day in February are given in
the table in 3-h intervals. The Trombe wall has single glazing
with an absorptivity-transmissivity product of � � 0.76 (that
is, 76 percent of the solar energy incident is absorbed by the
exposed surface of the Trombe wall), and the average com-
bined heat transfer coefficient for heat loss from the Trombe
wall to the ambient is determined to be hout � 3.4 W/m2 · °C.
The interior of the house is maintained at Tin � 20°C at all
times, and the heat transfer coefficient at the interior surface of
the Trombe wall is hin � 9.1 W/m2 · °C. Also, the vents on the
Trombe wall are kept closed, and thus the only heat transfer be-
tween the air in the house and the Trombe wall is through the
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interior surface of the wall. Assuming the temperature of the
Trombe wall to vary linearly between 20°C at the interior sur-
face and 0°C at the exterior surface at 7 AM and using the ex-
plicit finite difference method with a uniform nodal spacing of
�x � 5 cm, determine the temperature distribution along the
thickness of the Trombe wall after 6, 12, 18, 24, 30, 36, 42, and
48 hours and plot the results. Also, determine the net amount of
heat transferred to the house from the Trombe wall during the
first day if the wall is 2.8 m high and 7 m long.

5–87 Consider two-dimensional transient heat transfer in an
L-shaped solid bar that is initially at a uniform temperature
of 140°C and whose cross section is given in the figure. The
thermal conductivity and diffusivity of the body are k � 15
W/m · °C and � � 3.2 � 10�6 m2/s, respectively, and heat is
generated in the body at a rate of g· � 2 � 107 W/m3. The right
surface of the body is insulated, and the bottom surface is
maintained at a uniform temperature of 140°C at all times. At
time t � 0, the entire top surface is subjected to convection
with ambient air at T� � 25°C with a heat transfer coefficient
of h � 80 W/m2 · °C, and the left surface is subjected to
uniform heat flux at a rate of q·L � 8000 W/m2. The nodal net-
work of the problem consists of 13 equally spaced nodes with
�x � �y � 1.5 cm. Using the explicit method, determine the
temperature at the top corner (node 3) of the body after 2, 5,
and 30 min.

5–88 Reconsider Problem 5–87. Using EES (or other)
software, plot the temperature at the top corner as

a function of heating time varies from 2 min to 30 min, and dis-
cuss the results.

5–89 Consider a long solid bar (k � 28 W/m · °C and � �
12 � 10�6 m2/s) of square cross section that is initially at a uni-
form temperature of 20°C. The cross section of the bar is
20 cm � 20 cm in size, and heat is generated in it uniformly at
a rate of g· � 8 � 105 W/m3. All four sides of the bar are sub-
jected to convection to the ambient air at T� � 30°C with
a heat transfer coefficient of h � 45 W/m2 · °C. Using the
explicit finite difference method with a mesh size of �x �
�y � 10 cm, determine the centerline temperature of the bar
(a) after 10 min and (b) after steady conditions are established.

5–90E Consider a house whose windows are made of
0.375-in.-thick glass (k � 0.48 Btu/h · ft · °F and � � 4.2 �
10�6 ft2/s). Initially, the entire house, including the walls and
the windows, is at the outdoor temperature of To � 35°F. It is
observed that the windows are fogged because the indoor tem-
perature is below the dew-point temperature of 54°F. Now the
heater is turned on and the air temperature in the house is
raised to Ti � 72°F at a rate of 2°F rise per minute. The heat
transfer coefficients at the inner and outer surfaces of the wall
can be taken to be hi � 1.2 and ho � 2.6 Btu/h · ft2 · °F, respec-
tively, and the outdoor temperature can be assumed to remain
constant. Using the explicit finite difference method with a
mesh size of �x � 0.125 in., determine how long it will take

TABLE P5–86

The hourly variations of the monthly average ambient
temperature and solar heat flux incident on a
vertical surface

Ambient Solar 
Time of Day Temperature, °C Insolation, W/m2

7 AM–10 AM 0 375
10 AM–1 PM 4 750

1 PM–4 PM 6 580
4 PM–7 PM 1 95
7 PM–10 PM �2 0

10 PM–1 AM �3 0
1 AM–4 AM �4 0
4 AM–7 AM 4 0
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for the fog on the windows to clear up (i.e., for the inner sur-
face temperature of the window glass to reach 54°F).

5–91 A common annoyance in cars in winter months is the
formation of fog on the glass surfaces that blocks the view.
A practical way of solving this problem is to blow hot air or to
attach electric resistance heaters to the inner surfaces. Consider
the rear window of a car that consists of a 0.4-cm-thick glass
(k � 0.84 W/m · °C and � � 0.39 � 10�6 m2/s). Strip heater
wires of negligible thickness are attached to the inner surface
of the glass, 4 cm apart. Each wire generates heat at a rate of
10 W/m length. Initially the entire car, including its windows,
is at the outdoor temperature of To � �3°C. The heat transfer
coefficients at the inner and outer surfaces of the glass can be
taken to be hi � 6 and ho � 20 W/m2 · °C, respectively. Using
the explicit finite difference method with a mesh size of �x �
0.2 cm along the thickness and �y � 1 cm in the direction nor-
mal to the heater wires, determine the temperature distribution
throughout the glass 15 min after the strip heaters are turned
on. Also, determine the temperature distribution when steady
conditions are reached.

5–92 Repeat Problem 5–91 using the implicit method
with a time step of 1 min.

5–93 The roof of a house consists of a 15-cm-thick concrete
slab (k � 1.4 W/m · °C and � � 0.69 � 10�6 m2/s) that is 20 m
wide and 20 m long. One evening at 6 PM, the slab is observed
to be at a uniform temperature of 18°C. The average ambient
air and the night sky temperatures for the entire night are pre-
dicted to be 6°C and 260 K, respectively. The convection heat
transfer coefficients at the inner and outer surfaces of the roof
can be taken to be hi � 5 and ho � 12 W/m2 · °C, respectively.
The house and the interior surfaces of the walls and the floor

are maintained at a constant temperature of 20°C during the
night, and the emissivity of both surfaces of the concrete roof
is 0.9. Considering both radiation and convection heat transfers
and using the explicit finite difference method with a time step
of �t � 5 min and a mesh size of �x � 3 cm, determine the
temperatures of the inner and outer surfaces of the roof at 6 AM.
Also, determine the average rate of heat transfer through the
roof during that night.

5–94 Consider a refrigerator whose outer dimensions are
1.80 m � 0.8 m � 0.7 m. The walls of the refrigerator are
constructed of 3-cm-thick urethane insulation (k � 0.026
W/m · ° C and � � 0.36 � 10�6 m2/s) sandwiched between
two layers of sheet metal with negligible thickness. The refrig-
erated space is maintained at 3°C and the average heat transfer
coefficients at the inner and outer surfaces of the wall are
6 W/m2 · °C and 9 W/m2 · °C, respectively. Heat transfer
through the bottom surface of the refrigerator is negligible. The
kitchen temperature remains constant at about 25°C. Initially,
the refrigerator contains 15 kg of food items at an average
specific heat of 3.6 kJ/kg · °C. Now a malfunction occurs and
the refrigerator stops running for 6 h as a result. Assuming the
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temperature of the contents of the refrigerator, including the
air inside, rises uniformly during this period, predict the tem-
perature inside the refrigerator after 6 h when the repair-
man arrives. Use the explicit finite difference method with a
time step of �t � 1 min and a mesh size of �x � 1 cm and dis-
regard corner effects (i.e., assume one-dimensional heat trans-
fer in the walls).

5–95 Reconsider Problem 5–94. Using EES (or other)
software, plot the temperature inside the refrig-

erator as a function of heating time as time varies from 1 h to
10 h, and discuss the results.

Special Topic: Controlling the Numerical Error

5–96C Why do the results obtained using a numerical
method differ from the exact results obtained analytically?
What are the causes of this difference?

5–97C What is the cause of the discretization error? How
does the global discretization error differ from the local
discretization error?

5–98C Can the global (accumulated) discretization error be
less than the local error during a step? Explain.

5–99C How is the finite difference formulation for the first
derivative related to the Taylor series expansion of the solution
function?

5–100C Explain why the local discretization error of the fi-
nite difference method is proportional to the square of the step
size. Also explain why the global discretization error is propor-
tional to the step size itself.

5–101C What causes the round-off error? What kind of
calculations are most susceptible to round-off error?

5–102C What happens to the discretization and the round-
off errors as the step size is decreased?

5–103C Suggest some practical ways of reducing the
round-off error.

5–104C What is a practical way of checking if the round-off
error has been significant in calculations?

5–105C What is a practical way of checking if the dis-
cretization error has been significant in calculations?

Review Problems

5–106 Starting with an energy balance on the volume ele-
ment, obtain the steady three-dimensional finite difference
equation for a general interior node in rectangular coordinates
for T(x, y, z) for the case of constant thermal conductivity and
uniform heat generation.

5–107 Starting with an energy balance on the volume ele-
ment, obtain the three-dimensional transient explicit finite dif-
ference equation for a general interior node in rectangular

coordinates for T(x, y, z, t) for the case of constant thermal con-
ductivity and no heat generation.

5–108 Consider steady one-dimensional heat conduction in a
plane wall with variable heat generation and constant thermal
conductivity. The nodal network of the medium consists of
nodes 0, 1, 2, and 3 with a uniform nodal spacing of �x. The
temperature at the left boundary (node 0) is specified. Using
the energy balance approach, obtain the finite difference for-
mulation of boundary node 3 at the right boundary for the case
of combined convection and radiation with an emissivity of 	,
convection coefficient of h, ambient temperature of T�, and
surrounding temperature of Tsurr. Also, obtain the finite dif-
ference formulation for the rate of heat transfer at the left
boundary.

5–109 Consider one-dimensional transient heat conduction
in a plane wall with variable heat generation and variable ther-
mal conductivity. The nodal network of the medium consists of
nodes 0, 1, and 2 with a uniform nodal spacing of �x. Using
the energy balance approach, obtain the explicit finite differ-
ence formulation of this problem for the case of specified heat
flux q·0 and convection at the left boundary (node 0) with a con-
vection coefficient of h and ambient temperature of T�, and ra-
diation at the right boundary (node 2) with an emissivity of 	
and surrounding temperature of Tsurr.

5–110 Repeat Problem 5–109 for the case of implicit
formulation.

5–111 Consider steady one-dimensional heat conduction in a
pin fin of constant diameter D with constant thermal conduc-
tivity. The fin is losing heat by convection with the ambient air
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at T� (in °C) with a convection coefficient of h, and by radia-
tion to the surrounding surfaces at an average temperature of
Tsurr (in K). The nodal network of the fin consists of nodes 0 (at
the base), 1 (in the middle), and 2 (at the fin tip) with a uniform
nodal spacing of �x. Using the energy balance approach, ob-
tain the finite difference formulation of this problem for the
case of a specified temperature at the fin base and convection
and radiation heat transfer at the fin tip.

5–112 Starting with an energy balance on the volume ele-
ment, obtain the two-dimensional transient explicit finite dif-
ference equation for a general interior node in rectangular
coordinates for T(x, y, t) for the case of constant thermal con-
ductivity and uniform heat generation.

5–113 Starting with an energy balance on a disk volume ele-
ment, derive the one-dimensional transient implicit finite dif-
ference equation for a general interior node for T(z, t) in a
cylinder whose side surface is subjected to convection with a
convection coefficient of h and an ambient temperature of T�

for the case of constant thermal conductivity with uniform heat
generation.

5–114E The roof of a house consists of a 5-in.-thick concrete
slab (k � 0.81 Btu/h · ft · °F and � � 7.4 � 10�6 ft2/s) that is
45 ft wide and 55 ft long. One evening at 6 PM, the slab is ob-
served to be at a uniform temperature of 70°F. The ambient air
temperature is predicted to be at about 50°F from 6 PM to
10 PM, 42°F from 10 PM to 2 AM, and 38°F from 2 AM to 6 AM,
while the night sky temperature is expected to be about 445 R
for the entire night. The convection heat transfer coefficients at
the inner and outer surfaces of the roof can be taken to be
hi � 0.9 and ho � 2.1 Btu/h · ft2 · °F, respectively. The house
and the interior surfaces of the walls and the floor are main-
tained at a constant temperature of 70°F during the night, and
the emissivity of both surfaces of the concrete roof is 0.9.
Considering both radiation and convection heat transfers and
using the explicit finite difference method with a mesh size of

�x � 1 in. and a time step of �t � 5 min, determine the tem-
peratures of the inner and outer surfaces of the roof at 6 AM.
Also, determine the average rate of heat transfer through the
roof during that night.

5–115 Solar radiation incident on a large body of clean water
(k � 0.61 W/m · °C and � � 0.15 � 10�6 m2/s) such as a lake,
a river, or a pond is mostly absorbed by water, and the amount
of absorption varies with depth. For solar radiation incident at
a 45° angle on a 1-m-deep large pond whose bottom surface is
black (zero reflectivity), for example, 2.8 percent of the solar
energy is reflected back to the atmosphere, 37.9 percent is ab-
sorbed by the bottom surface, and the remaining 59.3 percent
is absorbed by the water body. If the pond is considered to be
four layers of equal thickness (0.25 m in this case), it can be
shown that 47.3 percent of the incident solar energy is ab-
sorbed by the top layer, 6.1 percent by the upper mid layer, 3.6
percent by the lower mid layer, and 2.4 percent by the bottom
layer [for more information see Çengel and Özişik, Solar En-
ergy, 33, no. 6 (1984), pp. 581–591]. The radiation absorbed by
the water can be treated conveniently as heat generation in the
heat transfer analysis of the pond.

Consider a large 1-m-deep pond that is initially at a uniform
temperature of 15°C throughout. Solar energy is incident on
the pond surface at 45° at an average rate of 500 W/m2 for a pe-
riod of 4 h. Assuming no convection currents in the water and
using the explicit finite difference method with a mesh size of
�x � 0.25 m and a time step of �t � 15 min, determine the
temperature distribution in the pond under the most favorable
conditions (i.e., no heat losses from the top or bottom surfaces
of the pond). The solar energy absorbed by the bottom surface
of the pond can be treated as a heat flux to the water at that sur-
face in this case.

ε

ε

Concrete
roof

Radiation

Radiation

Convection

Convection

hi, Ti

Ti

ho, To

Tsky

FIGURE P5–114E

0

x

Solar pond

Solar
radiation

45°

Top layer

Upper mid layer

Lower mid layer

Bottom layer Black

1

2

3

4

qs, W/m2·

Sun

FIGURE P5–115

cen58933_ch05.qxd  9/4/2002  11:43 AM  Page 329



330
HEAT TRANSFER

5–116 Reconsider Problem 5–115. The absorption of solar
radiation in that case can be expressed more accurately as a
fourth-degree polynomial as

g·(x) �
q·s(0.859 � 3.415x � 6.704x2 � 6.339x3 � 2.278x4), W/m3

where q·s is the solar flux incident on the surface of the pond in
W/m2 and x is the distance from the free surface of the pond
in m. Solve Problem 5–115 using this relation for the absorp-
tion of solar radiation.

5–117 A hot surface at 120°C is to be cooled by attaching
8 cm long, 0.8 cm in diameter aluminum pin fins (k � 237
W/m · °C and � � 97.1 � 10�6 m2/s) to it with a center-to-
center distance of 1.6 cm. The temperature of the surrounding
medium is 15°C, and the heat transfer coefficient on the sur-
faces is 35 W/m2 · °C. Initially, the fins are at a uniform tem-
perature of 30°C, and at time t � 0, the temperature of the hot
surface is raised to 120°C. Assuming one-dimensional heat
conduction along the fin and taking the nodal spacing to be
�x � 2 cm and a time step to be �t � 0.5 s, determine the
nodal temperatures after 5 min by using the explicit finite dif-
ference method. Also, determine how long it will take for
steady conditions to be reached.

5–118E Consider a large plane wall of thickness L � 0.3 ft
and thermal conductivity k � 1.2 Btu/h · ft · °F in space. The
wall is covered with a material having an emissivity of
	 � 0.80 and a solar absorptivity of �s � 0.45. The inner sur-
face of the wall is maintained at 520 R at all times, while the
outer surface is exposed to solar radiation that is incident at a
rate of q·s � 300 Btu/h · ft2. The outer surface is also losing heat

by radiation to deep space at 0 R. Using a uniform nodal spac-
ing of �x � 0.1 ft, (a) obtain the finite difference formulation
for steady one-dimensional heat conduction and (b) determine
the nodal temperatures by solving those equations.

Answers: (b) 522 R, 525 R, 527 R

5–119 Frozen food items can be defrosted by simply leaving
them on the counter, but it takes too long. The process can
be speeded up considerably for flat items such as steaks by
placing them on a large piece of highly conducting metal,
called the defrosting plate, which serves as a fin. The increased
surface area enhances heat transfer and thus reduces the de-
frosting time.

Consider two 1.5-cm-thick frozen steaks at �18°C that re-
semble a 15-cm-diameter circular object when placed next to
each other. The steaks are now placed on a 1-cm-thick black-
anodized circular aluminum defrosting plate (k � 237
W/m · °C, � � 97.1 � 10�6 m2/s, and 	 � 0.90) whose outer
diameter is 30 cm. The properties of the frozen steaks are
 � 970 kg/m3, Cp � 1.55 kJ/kg · °C, k � 1.40 W/m · °C,
� � 0.93 � 10�6 m2/s, and 	 � 0.95, and the heat of fusion is
hif � 187 kJ/kg. The steaks can be considered to be defrosted
when their average temperature is 0°C and all of the ice in the
steaks is melted. Initially, the defrosting plate is at the room
temperature of 20°C, and the wooden countertop it is placed on
can be treated as insulation. Also, the surrounding surfaces can
be taken to be at the same temperature as the ambient air, and
the convection heat transfer coefficient for all exposed surfaces
can be taken to be 12 W/m2 · °C. Heat transfer from the lateral
surfaces of the steaks and the defrosting plate can be neglected.
Assuming one-dimensional heat conduction in both the steaks
and the defrosting plate and using the explicit finite difference
method, determine how long it will take to defrost the steaks.
Use four nodes with a nodal spacing of �x � 0.5 cm for the
steaks, and three nodes with a nodal spacing of �r � 3.75 cm
for the exposed portion of the defrosting plate. Also, use a time
step of �t � 5 s. Hint: First, determine the total amount of heat
transfer needed to defrost the steaks, and then determine how
long it will take to transfer that much heat.
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5–120 Repeat Problem 5–119 for a copper defrosting plate
using a time step of �t � 3 s.

Design and Essay Problems

5–121 Write a two-page essay on the finite element method,
and explain why it is used in most commercial engineering
software packages. Also explain how it compares to the finite
difference method.

5–122 Numerous professional software packages are avail-
able in the market for performing heat transfer analysis, and
they are widely advertised in professional magazines such as
the Mechanical Engineering magazine published by the Amer-
ican Society of Mechanical Engineers (ASME). Your company
decides to purchase such a software package and asks you
to prepare a report on the available packages, their costs, ca-
pabilities, ease of use, and compatibility with the available
hardware, and other software as well as the reputation of the
software company, their history, financial health, customer
support, training, and future prospects, among other things.
After a preliminary investigation, select the top three packages
and prepare a full report on them.

5–123 Design a defrosting plate to speed up defrosting of flat
food items such as frozen steaks and packaged vegetables and
evaluate its performance using the finite difference method
(see Prob. 5–119). Compare your design to the defrosting

plates currently available on the market. The plate must per-
form well, and it must be suitable for purchase and use as a
household utensil, durable, easy to clean, easy to manufacture,
and affordable. The frozen food is expected to be at an initial
temperature of �18°C at the beginning of the thawing process
and 0°C at the end with all the ice melted. Specify the material,
shape, size, and thickness of the proposed plate. Justify your
recommendations by calculations. Take the ambient and sur-
rounding surface temperatures to be 20°C and the convection
heat transfer coefficient to be 15 W/m2 · °C in your analysis.
For a typical case, determine the defrosting time with and
without the plate.

5–124 Design a fire-resistant safety box whose outer dimen-
sions are 0.5 m � 0.5 m � 0.5 m that will protect its com-
bustible contents from fire which may last up to 2 h. Assume
the box will be exposed to an environment at an average tem-
perature of 700°C with a combined heat transfer coefficient of
70 W/m2 · °C and the temperature inside the box must be be-
low 150°C at the end of 2 h. The cavity of the box must be as
large as possible while meeting the design constraints, and the
insulation material selected must withstand the high tempera-
tures to which it will be exposed. Cost, durability, and strength
are also important considerations in the selection of insulation
materials.
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