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I
n the preceding chapters we made extensive use of the

property tables. We tend to take the property tables for

granted, but thermodynamic laws and principles are of little

use to engineers without them. In this chapter, we focus our

attention on how the property tables are prepared and how

some unknown properties can be determined from limited

available data.

It will come as no surprise that some properties such as

temperature, pressure, volume, and mass can be measured

directly. Other properties such as density and specific volume

can be determined from these using some simple relations.

However, properties such as internal energy, enthalpy, and

entropy are not so easy to determine because they cannot be

measured directly or related to easily measurable properties

through some simple relations. Therefore, it is essential that

we develop some fundamental relations between commonly

encountered thermodynamic properties and express the

properties that cannot be measured directly in terms of easily

measurable properties.

By the nature of the material, this chapter makes extensive

use of partial derivatives. Therefore, we start by reviewing

them. Then we develop the Maxwell relations, which form

the basis for many thermodynamic relations. Next we discuss

the Clapeyron equation, which enables us to determine the

enthalpy of vaporization from P, v, and T measurements

alone, and we develop general relations for c
v
, cp, du, dh,

and ds that are valid for all pure substances under all condi-

tions. Then we discuss the Joule-Thomson coefficient, which

is a measure of the temperature change with pressure during

a throttling process. Finally, we develop a method of evaluat-

ing the �h, �u, and �s of real gases through the use of gen-

eralized enthalpy and entropy departure charts.

Objectives

The objectives of Chapter 12 are to:

• Develop fundamental relations between commonly

encountered thermodynamic properties and express the

properties that cannot be measured directly in terms of

easily measurable properties.

• Develop the Maxwell relations, which form the basis for

many thermodynamic relations.

• Develop the Clapeyron equation and determine the

enthalpy of vaporization from P, v, and T measurements

alone.

• Develop general relations for c
v
, cp, du, dh, and ds that are

valid for all pure substances.

• Discuss the Joule-Thomson coefficient.

• Develop a method of evaluating the �h, �u, and �s of real

gases through the use of generalized enthalpy and entropy

departure charts.



12–1 ■ A LITTLE MATH—PARTIAL DERIVATIVES
AND ASSOCIATED RELATIONS

Many of the expressions developed in this chapter are based on the state pos-

tulate, which expresses that the state of a simple, compressible substance is

completely specified by any two independent, intensive properties. All other

properties at that state can be expressed in terms of those two properties.

Mathematically speaking,

where x and y are the two independent properties that fix the state and z rep-

resents any other property. Most basic thermodynamic relations involve dif-

ferentials. Therefore, we start by reviewing the derivatives and various

relations among derivatives to the extent necessary in this chapter.

Consider a function f that depends on a single variable x, that is, f � f (x).

Figure 12–1 shows such a function that starts out flat but gets rather steep as x

increases. The steepness of the curve is a measure of the degree of depen-

dence of f on x. In our case, the function f depends on x more strongly at

larger x values. The steepness of a curve at a point is measured by the slope of

a line tangent to the curve at that point, and it is equivalent to the derivative

of the function at that point defined as

(12–1)

Therefore, the derivative of a function f(x) with respect to x represents the

rate of change of f with x.

df

dx
� lim
¢xS0

 
¢f
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FIGURE 12–1

The derivative of a function at a

specified point represents the slope of

the function at that point.
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FIGURE 12–2

Schematic for Example 12–1.

EXAMPLE 12–1 Approximating Differential Quantities by Differences

The cp of ideal gases depends on temperature only, and it is expressed as

cp(T ) � dh(T )/dT. Determine the cp of air at 300 K, using the enthalpy data

from Table A–17, and compare it to the value listed in Table A–2b.

Solution The cp value of air at a specified temperature is to be determined

using enthalpy data.

Analysis The cp value of air at 300 K is listed in Table A–2b to be 1.005

kJ/kg · K. This value could also be determined by differentiating the function

h(T ) with respect to T and evaluating the result at T � 300 K. However, the

function h(T ) is not available. But, we can still determine the cp value approx-

imately by replacing the differentials in the cp(T ) relation by differences in

the neighborhood of the specified point (Fig. 12–2):

Discussion Note that the calculated cp value is identical to the listed value.

Therefore, differential quantities can be viewed as differences. They can

 �
1305.22 � 295.17 2  kJ>kg1305 � 295 2  K � 1.005 kJ/kg # K 

 cp 1300 K 2 � c dh 1T 2
dT
d

TÉ�É300 K

 �  c ¢h 1T 2
¢T

d
T � 300 K

�

h 1305 K 2 � h 1295 K 21305 � 295 2  K



even be replaced by differences, whenever necessary, to obtain approximate

results. The widely used finite difference numerical method is based on this

simple principle.

Partial Differentials
Now consider a function that depends on two (or more) variables, such as

z � z(x, y). This time the value of z depends on both x and y. It is sometimes

desirable to examine the dependence of z on only one of the variables. This

is done by allowing one variable to change while holding the others constant

and observing the change in the function. The variation of z(x, y) with x

when y is held constant is called the partial derivative of z with respect to

x, and it is expressed as

(12–2)

This is illustrated in Fig. 12–3. The symbol � represents differential

changes, just like the symbol d. They differ in that the symbol d represents

the total differential change of a function and reflects the influence of all

variables, whereas � represents the partial differential change due to the

variation of a single variable.

Note that the changes indicated by d and � are identical for independent

variables, but not for dependent variables. For example, (�x)y � dx but (�z)y

� dz. [In our case, dz � (�z)x � (�z)y.] Also note that the value of the par-

tial derivative (�z /�x)y, in general, is different at different y values.

To obtain a relation for the total differential change in z(x, y) for simulta-

neous changes in x and y, consider a small portion of the surface z(x, y)

shown in Fig. 12–4. When the independent variables x and y change by �x

and �y, respectively, the dependent variable z changes by �z, which can be

expressed as

Adding and subtracting z(x, y � �y), we get

or

Taking the limits as �x → 0 and �y → 0 and using the definitions of partial

derivatives, we obtain

(12–3)

Equation 12–3 is the fundamental relation for the total differential of a

dependent variable in terms of its partial derivatives with respect to the

independent variables. This relation can easily be extended to include more

independent variables.

dz � a 0z
0x
b

y

 dx � a 0z
0y
b

x

 dy

 ¢z �
z 1x � ¢x, y � ¢y 2 � z 1x, y � ¢y 2

¢x
 ¢x �

z 1x, y � ¢y 2 � z 1x, y 2
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 ¢z � z 1x � ¢x, y � ¢y 2 � z 1x, y � ¢y 2 � z 1x, y � ¢y 2 � z 1x, y 2
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a 0z
0x
b

y

� lim
¢xS0

Éa ¢z

¢x
b

y

� lim
¢xS0

É
z 1x � ¢x, y 2 � z 1x, y 2

¢x

Chapter 12 | 653

x y

z

z(x + ∆x, y + ∆y)

x + ∆x, y + ∆y

x, y + ∆y
x + ∆x, y

z(x, y)

FIGURE 12–4

Geometric representation of total

derivative dz for a function z(x, y).
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Geometric representation of partial

derivative (�z/�x)y.
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EXAMPLE 12–2 Total Differential versus Partial Differential

Consider air at 300 K and 0.86 m3/kg. The state of air changes to 302 K

and 0.87 m3/kg as a result of some disturbance. Using Eq. 12–3, estimate

the change in the pressure of air.

Solution The temperature and specific volume of air changes slightly dur-

ing a process. The resulting change in pressure is to be determined.

Assumptions Air is an ideal gas.

Analysis Strictly speaking, Eq. 12–3 is valid for differential changes in vari-

ables. However, it can also be used with reasonable accuracy if these changes

are small. The changes in T and v, respectively, can be expressed as

and

An ideal gas obeys the relation Pv � RT. Solving for P yields

Note that R is a constant and P � P(T, v). Applying Eq. 12–3 and using

average values for T and v,

Therefore, the pressure will decrease by 0.491 kPa as a result of this distur-

bance. Notice that if the temperature had remained constant (dT � 0), the

pressure would decrease by 1.155 kPa as a result of the 0.01 m3/kg

increase in specific volume. However, if the specific volume had remained

constant (dv � 0), the pressure would increase by 0.664 kPa as a result of

the 2-K rise in temperature (Fig. 12–5). That is, 

and

Discussion Of course, we could have solved this problem easily (and exactly)

by evaluating the pressure from the ideal-gas relation P � RT/v at the final

state (302 K and 0.87 m3/kg) and the initial state (300 K and 0.86 m3/kg)

and taking their difference. This yields �0.491 kPa, which is exactly the

value obtained above. Thus the small finite quantities (2 K, 0.01 m3/kg) can

be approximated as differential quantities with reasonable accuracy.

dP � 10P 2
v

� 10P 2T � 0.664 � 1.155 � �0.491 kPa

 a 0P
0v
b

T

 dv � 10P 2T � �1.155 kPa

 a 0P
0T
b

v

 dT � 10P 2
v

� 0.664 kPa

 � �0.491 kPa

 � 0.664 kPa � 1.155 kPa

 � 10.287 kPa #  m3>kg #  K 2 c 2 K

0.865 m3>kg
�
1301 K 2 10.01 m3>kg 210.865 m3>kg 2 2 d

 dP � a 0P
0T
b

v

 dT � a 0P
0v
b

T

 dv �
R dT

v

�
RT dv

v
2

P �
RT

v

dv �  ¢v � 10.87 � 0.86 2  m3>kg � 0.01 m3>kg

dT �  ¢T � 1302 � 300 2  K � 2 K

P, kPa
(∂P)

v
 = 0.664

(∂P)T = –1.155

dP = –0.491

T, K

302

300

0.86 0.87

v, m3/kg

FIGURE 12–5

Geometric representation of the

disturbance discussed in 

Example 12–2.



Partial Differential Relations
Now let us rewrite Eq. 12–3 as

(12–4)

where

Taking the partial derivative of M with respect to y and of N with respect to

x yields

The order of differentiation is immaterial for properties since they are con-

tinuous point functions and have exact differentials. Therefore, the two rela-

tions above are identical:

(12–5)

This is an important relation for partial derivatives, and it is used in calculus

to test whether a differential dz is exact or inexact. In thermodynamics, this

relation forms the basis for the development of the Maxwell relations dis-

cussed in the next section.

Finally, we develop two important relations for partial derivatives—the

reciprocity and the cyclic relations. The function z � z(x, y) can also be

expressed as x � x(y, z) if y and z are taken to be the independent variables.

Then the total differential of x becomes, from Eq. 12–3,

(12–6)

Eliminating dx by combining Eqs. 12–3 and 12–6, we have

Rearranging,

(12–7)

The variables y and z are independent of each other and thus can be varied

independently. For example, y can be held constant (dy � 0), and z can be

varied over a range of values (dz � 0). Therefore, for this equation to be

valid at all times, the terms in the brackets must equal zero, regardless of

the values of y and z. Setting the terms in each bracket equal to zero gives

(12–8)
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The first relation is called the reciprocity relation, and it shows that the

inverse of a partial derivative is equal to its reciprocal (Fig. 12–6). The sec-

ond relation is called the cyclic relation, and it is frequently used in ther-

modynamics (Fig. 12–7).
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FIGURE 12–6

Demonstration of the reciprocity

relation for the function 

z � 2xy � 3y2z � 0.

FIGURE 12–7

Partial differentials are powerful tools

that are supposed to make life easier,

not harder.
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EXAMPLE 12–3 Verification of Cyclic and Reciprocity Relations

Using the ideal-gas equation of state, verify (a) the cyclic relation and (b)

the reciprocity relation at constant P.

Solution The cyclic and reciprocity relations are to be verified for an ideal gas.

Analysis The ideal-gas equation of state Pv � RT involves the three vari-

ables P, v, and T. Any two of these can be taken as the independent vari-

ables, with the remaining one being the dependent variable.

(a) Replacing x, y, and z in Eq. 12–9 by P, v, and T, respectively, we can

express the cyclic relation for an ideal gas as

where

Substituting yields

which is the desired result.

(b) The reciprocity rule for an ideal gas at P � constant can be expressed as

Performing the differentiations and substituting, we have

Thus the proof is complete.

R

P
�
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�
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b � �
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� �1

 T � T 1P, v 2 �
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12–2 ■ THE MAXWELL RELATIONS

The equations that relate the partial derivatives of properties P, v, T, and s

of a simple compressible system to each other are called the Maxwell rela-

tions. They are obtained from the four Gibbs equations by exploiting the

exactness of the differentials of thermodynamic properties.



Two of the Gibbs relations were derived in Chap. 7 and expressed as

(12–10)

(12–11)

The other two Gibbs relations are based on two new combination proper-

ties—the Helmholtz function a and the Gibbs function g, defined as

(12–12)

(12–13)

Differentiating, we get

Simplifying the above relations by using Eqs. 12–10 and 12–11, we obtain

the other two Gibbs relations for simple compressible systems:

(12–14)

(12–15)

A careful examination of the four Gibbs relations reveals that they are of the

form

(12–4)

with

(12–5)

since u, h, a, and g are properties and thus have exact differentials. Apply-

ing Eq. 12–5 to each of them, we obtain

(12–16)

(12–17)

(12–18)

(12–19)

These are called the Maxwell relations (Fig. 12–8). They are extremely

valuable in thermodynamics because they provide a means of determining

the change in entropy, which cannot be measured directly, by simply mea-

suring the changes in properties P, v, and T. Note that the Maxwell relations

given above are limited to simple compressible systems. However, other

similar relations can be written just as easily for nonsimple systems such as

those involving electrical, magnetic, and other effects.

a 0s
0P
b

T

� � a 0v
0T
b

P

a 0s
0v
b

T

� a 0P
0T
b

v

a 0T
0P
b

s

� a 0v
0s
b

P

a 0T
0v
b

s

� � a 0P
0s
b

v

a 0M
0y
b

x

� a 0N
0x
b

y

dz � M dx � N dy

 dg � �s dT � v dP

 da � �s dT � P dv

 dg � dh � T ds � s dT

 da � du � T ds � s dT

 g � h � Ts

 a � u � Ts

 dh � T ds � v dP

 du � T ds � P dv

Chapter 12 | 657

= –
∂P
––
      (     )∂s

∂T
––
      (     )

    s∂v

= 
∂T
––
      (     )

    s∂P

∂s
––
      (     )

    T∂P

= 
∂P
––
      (     )∂T

∂s
––
      (     )

    T∂v

= –

∂v
––
      (     )∂s    P

∂v
––
      (     )∂T    P

v

v

FIGURE 12–8

Maxwell relations are extremely

valuable in thermodynamic analysis.



EXAMPLE 12–4 Verification of the Maxwell Relations

Verify the validity of the last Maxwell relation (Eq. 12–19) for steam at

250°C and 300 kPa.

Solution The validity of the last Maxwell relation is to be verified for steam

at a specified state.

Analysis The last Maxwell relation states that for a simple compressible

substance, the change in entropy with pressure at constant temperature is

equal to the negative of the change in specific volume with temperature at

constant pressure.

If we had explicit analytical relations for the entropy and specific volume

of steam in terms of other properties, we could easily verify this by perform-

ing the indicated derivations. However, all we have for steam are tables of

properties listed at certain intervals. Therefore, the only course we can take

to solve this problem is to replace the differential quantities in Eq. 12–19

with corresponding finite quantities, using property values from the tables

(Table A–6 in this case) at or about the specified state.

T

?
� �

T � 250°C

?
� �

P � 300 kPa

T � 250°C

?
� �

P � 300 kPa

?
� �

�0.00165 m3/kg � K � �0.00159 m3/kg � K

since kJ � kPa · m3 and K � °C for temperature differences. The two values

are within 4 percent of each other. This difference is due to replacing the

differential quantities by relatively large finite quantities. Based on the close

agreement between the two values, the steam seems to satisfy Eq. 12–19 at

the specified state.

Discussion This example shows that the entropy change of a simple com-

pressible system during an isothermal process can be determined from a

knowledge of the easily measurable properties P, v, and T alone.

 
(0.87535 � 0.71643) m3

�kg

(300 � 200)°C

(7.3804 � 7.7100) kJ�kg # K
(400 � 200) kPa

c v300°C � v200°C

(300 � 200)°C
d� s400 kPa � s200 kPa

(400 � 200) kPa�

a 0v
0T
b��s

�P�

a 0v
0T
b

P
��s

�P�

12–3 ■ THE CLAPEYRON EQUATION

The Maxwell relations have far-reaching implications in thermodynamics

and are frequently used to derive useful thermodynamic relations. The

Clapeyron equation is one such relation, and it enables us to determine the

enthalpy change associated with a phase change (such as the enthalpy of

vaporization hfg) from a knowledge of P, v, and T data alone.

Consider the third Maxwell relation, Eq. 12–18:

During a phase-change process, the pressure is the saturation pressure,

which depends on the temperature only and is independent of the specific

a 0P
0T
b

v

� a 0s
0v
b

T
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volume. That is, Psat � f (Tsat). Therefore, the partial derivative (�P/�T )
v

can

be expressed as a total derivative (dP/dT )sat, which is the slope of the satu-

ration curve on a P-T diagram at a specified saturation state (Fig. 12–9).

This slope is independent of the specific volume, and thus it can be treated

as a constant during the integration of Eq. 12–18 between two saturation

states at the same temperature. For an isothermal liquid–vapor phase-change

process, for example, the integration yields

(12–20)

or

(12–21)

During this process the pressure also remains constant. Therefore, from

Eq. 12–11,

Substituting this result into Eq. 12–21, we obtain

(12–22)

which is called the Clapeyron equation after the French engineer and

physicist E. Clapeyron (1799–1864). This is an important thermodynamic

relation since it enables us to determine the enthalpy of vaporization hfg at a

given temperature by simply measuring the slope of the saturation curve on

a P-T diagram and the specific volume of saturated liquid and saturated

vapor at the given temperature.

The Clapeyron equation is applicable to any phase-change process that

occurs at constant temperature and pressure. It can be expressed in a general

form as

(12–23)

where the subscripts 1 and 2 indicate the two phases.

a dP

dT
b

sat

�
h12

Tv12

a dP

dT
b

sat

�
hfg

Tvfg

dh � T ds � v dPÉÉS �
g

f

dh � �
g

f

T dsS hfg � Tsfg

 a dP

dT
b

sat

�
sfg

vfg

 

sg � sf � a dP

dT
b

sat 

1vg � vf 2
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∂P
––(     )

    sat∂T

 

FIGURE 12–9

The slope of the saturation curve on a

P-T diagram is constant at a constant 

T or P.

EXAMPLE 12–5 Evaluating the hfg of a Substance from 

the P-v-T Data

Using the Clapeyron equation, estimate the value of the enthalpy of vaporiza-

tion of refrigerant-134a at 20°C, and compare it with the tabulated value.

Solution The hfg of refrigerant-134a is to be determined using the Clapeyron

equation.

Analysis From Eq. 12–22,

hfg � Tvfg a dP

dT
b

sat

→
0



The Clapeyron equation can be simplified for liquid–vapor and solid–vapor

phase changes by utilizing some approximations. At low pressures vg 		 vf ,

and thus vfg � vg. By treating the vapor as an ideal gas, we have vg � RT/P.

Substituting these approximations into Eq. 12–22, we find

or

For small temperature intervals hfg can be treated as a constant at some aver-

age value. Then integrating this equation between two saturation states yields

(12–24)

This equation is called the Clapeyron–Clausius equation, and it can be

used to determine the variation of saturation pressure with temperature. It

can also be used in the solid–vapor region by replacing hfg by hig (the

enthalpy of sublimation) of the substance.

ln a P2

P1

b
sat

�
hfg

R
a 1

T1

�
1

T2

b
sat

a dP

P
b

sat

�
hfg

R
a dT

T 2
b

sat

a dP

dT
b

sat

�
Phfg

RT 2
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where, from Table A–11,

since �T(°C) � �T(K). Substituting, we get

The tabulated value of hfg at 20°C is 182.27 kJ/kg. The small difference

between the two values is due to the approximation used in determining the

slope of the saturation curve at 20°C.

 � 182.40 kJ/kg

 hfg � 1293.15 K 2 10.035153 m3>kg 2 117.70 kPa>K 2 a 1 kJ

1 kPa # m3
b

 �
646.18 � 504.58 kPa

8°C
� 17.70 kPa>K

 a dP

d T
b

sat,20°C

� a ¢P

¢T
b

sat,20°C

�
Psat @ 24°C � Psat @ 16°C

24°C � 16°C

 vfg � 1vg � vf 2@ 20°C � 0.035969 � 0.0008161 � 0.035153 m3>kg

EXAMPLE 12–6 Extrapolating Tabular Data 

with the Clapeyron Equation

Estimate the saturation pressure of refrigerant-134a at �50°F, using the

data available in the refrigerant tables.

Solution The saturation pressure of refrigerant-134a is to be determined

using other tabulated data.

Analysis Table A–11E lists saturation data at temperatures �40°F and

above. Therefore, we should either resort to other sources or use extrapolation



12–4 ■ GENERAL RELATIONS 
FOR du, dh, ds, c

v
, AND cp

The state postulate established that the state of a simple compressible system

is completely specified by two independent, intensive properties. Therefore,

at least theoretically, we should be able to calculate all the properties of a

system at any state once two independent, intensive properties are available.

This is certainly good news for properties that cannot be measured directly

such as internal energy, enthalpy, and entropy. However, the calculation of

these properties from measurable ones depends on the availability of simple

and accurate relations between the two groups.

In this section we develop general relations for changes in internal energy,

enthalpy, and entropy in terms of pressure, specific volume, temperature, and

specific heats alone. We also develop some general relations involving specific

heats. The relations developed will enable us to determine the changes in these

properties. The property values at specified states can be determined only after

the selection of a reference state, the choice of which is quite arbitrary.

Internal Energy Changes
We choose the internal energy to be a function of T and v; that is, u �

u(T, v) and take its total differential (Eq. 12–3):

Using the definition of c
v
, we have

(12–25)du � c
v
 dT � a 0u

0v
b

T

 dv

du � a 0u
0T
b

v

dT � a 0u
0v
b

T

 dv
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to obtain saturation data at lower temperatures. Equation 12–24 provides an

intelligent way to extrapolate:

In our case T1 � �40°F and T2 � �50°F. For refrigerant-134a, R � 0.01946

Btu/lbm · R. Also from Table A–11E at �40°F, we read hfg � 97.100 Btu/lbm

and P1 � Psat @ �40°F � 7.432 psia. Substituting these values into Eq. 12–24

gives

Therefore, according to Eq. 12–24, the saturation pressure of refrigerant-134a

at �50°F is 5.56 psia. The actual value, obtained from another source,

is 5.506 psia. Thus the value predicted by Eq. 12–24 is in error by about

1 percent, which is quite acceptable for most purposes. (If we had used linear

extrapolation instead, we would have obtained 5.134 psia, which is in error by

7 percent.)

 P2 � 5.56 psia

 ln a P2

7.432 psia
b �

97.100 Btu>lbm

0.01946 Btu>lbm #  R
a 1

420 R
�

1

410 R
b

ln a P2

P1

b
sat

�
hfg

R
a 1

T1

�
1

T2

b
sat



Now we choose the entropy to be a function of T and v; that is, s � s(T, v)

and take its total differential,

(12–26)

Substituting this into the T ds relation du � T ds � P dv yields

(12–27)

Equating the coefficients of dT and dv in Eqs. 12–25 and 12–27 gives

(12–28)

Using the third Maxwell relation (Eq. 12–18), we get

Substituting this into Eq. 12–25, we obtain the desired relation for du:

(12–29)

The change in internal energy of a simple compressible system associated

with a change of state from (T1, v1) to (T2, v2) is determined by integration:

(12–30)

Enthalpy Changes
The general relation for dh is determined in exactly the same manner. This

time we choose the enthalpy to be a function of T and P, that is, h � h(T, P),

and take its total differential,

Using the definition of cp, we have

(12–31)

Now we choose the entropy to be a function of T and P; that is, we take

s � s(T, P) and take its total differential,

(12–32)

Substituting this into the T ds relation dh � T ds � v dP gives

(12–33)dh � T a 0s
0T
b

P

 dT � cv � T a 0s
0P
b

T

d
 

 dP

ds � a 0s
0T
b

P

 dT � a 0s
0P
b

T

 dP

dh � cp dT � a 0h
0P
b

T

 dP

dh � a 0h
0T
b

P

 dT � a 0h
0P
b

T

 dP

u2 � u1 � �
T2

T1

c
v
ÉdT � �

v2

v1

É
cT a 0P
0T
b

v

� P d Édv

du � c
v
ÉdT � cT a 0P

0T
b

v

� P d  dv

a 0u
0v
b

T

� T a 0P
0T
b

v

� P

 a 0u
0v
b

T

� T a 0s
0v
b

T

� P

 a 0s
0T
b

v

�
c

v

T

du � T a 0s
0T
b

v

 dT � cT a 0s
0v
b

T

� P d  dv

ds � a 0s
0T
b

v

 dT � a 0s
0v
b

T

 dv
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Equating the coefficients of dT and dP in Eqs. 12–31 and 12–33, we obtain

(12–34)

Using the fourth Maxwell relation (Eq. 12–19), we have

Substituting this into Eq. 12–31, we obtain the desired relation for dh:

(12–35)

The change in enthalpy of a simple compressible system associated with a

change of state from (T1, P1) to (T2, P2) is determined by integration:

(12–36)

In reality, one needs only to determine either u2 � u1 from Eq. 12–30 or

h2 � h1 from Eq. 12–36, depending on which is more suitable to the data at

hand. The other can easily be determined by using the definition of enthalpy

h � u � Pv:

(12–37)

Entropy Changes
Below we develop two general relations for the entropy change of a simple

compressible system.

The first relation is obtained by replacing the first partial derivative in the

total differential ds (Eq. 12–26) by Eq. 12–28 and the second partial deriva-

tive by the third Maxwell relation (Eq. 12–18), yielding

(12–38)

and

(12–39)

The second relation is obtained by replacing the first partial derivative in the

total differential of ds (Eq. 12–32) by Eq. 12–34, and the second partial

derivative by the fourth Maxwell relation (Eq. 12–19), yielding

(12–40)

and

(12–41)

Either relation can be used to determine the entropy change. The proper

choice depends on the available data.

s2 � s1 � �
T2

T1

 
cp

T
 dT � �

P2

P1

a  
0v

0T
b

P

 dP

ds �
cP

T
 dT � a 0v

0T
b

P

 dP

s2 � s1 � �
T2

T1

 
c

v

T
É dT � �

v2

v1

 a 0P
0T
b

v

 dv

ds �
c

v

T
 dT � a 0P

0T
b

v

dv

h2 � h1 � u2 � u1 � 1P2v2 � P1v1 2

h2 � h1 � �
T2

T1

 cp dT � �
P2

P1

 cv � T a 0v
0T
b

P

d  dP

dh � cp d T � cv � T a 0v
0T
b

P

d dP

a 0h
0P
b

T

� v � T a 0v
0T
b

P

 a 0h
0P
b

T

� v � T a 0s
0P
b

T

 a 0s
0T
b

P

�
cp

T
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Specific Heats c
v

and cp
Recall that the specific heats of an ideal gas depend on temperature only.

For a general pure substance, however, the specific heats depend on specific

volume or pressure as well as the temperature. Below we develop some gen-

eral relations to relate the specific heats of a substance to pressure, specific

volume, and temperature.

At low pressures gases behave as ideal gases, and their specific heats

essentially depend on temperature only. These specific heats are called zero

pressure, or ideal-gas, specific heats (denoted c
v 0 and cp0), and they are rel-

atively easier to determine. Thus it is desirable to have some general rela-

tions that enable us to calculate the specific heats at higher pressures (or

lower specific volumes) from a knowledge of c
v 0 or cp 0 and the P-v-T

behavior of the substance. Such relations are obtained by applying the test

of exactness (Eq. 12–5) on Eqs. 12–38 and 12–40, which yields

(12–42)

and

(12–43)

The deviation of cp from cp 0 with increasing pressure, for example, is deter-

mined by integrating Eq. 12–43 from zero pressure to any pressure P along

an isothermal path:

(12–44)

The integration on the right-hand side requires a knowledge of the P-v-T

behavior of the substance alone. The notation indicates that v should be dif-

ferentiated twice with respect to T while P is held constant. The resulting

expression should be integrated with respect to P while T is held constant.

Another desirable general relation involving specific heats is one that relates

the two specific heats cp and c
v
. The advantage of such a relation is obvious:

We will need to determine only one specific heat (usually cp) and calculate

the other one using that relation and the P-v-T data of the substance. We

start the development of such a relation by equating the two ds relations

(Eqs. 12–38 and 12–40) and solving for dT:

Choosing T � T(v, P) and differentiating, we get

Equating the coefficient of either dv or dP of the above two equations gives

the desired result:

(12–45)cp � c
v

� T a 0v
0T
b

P

a 0P
0T
b

v

dT � a 0T
0v
b

P

 dv � a 0T
0P
b

v

 dP

dT �
T 10P>0T 2

v

cp � c
v

 dv �
T 10v>0T 2P

cp � c
v

 dP

1cp � cp0 2T � �T �
P

0

 a 02v
0T 2
b

P

 dP

a 0cp

0P
b

T

� �T a 02v
0T 2
b

P

a 0cv

0v
b

T

� T a 02P
0T 2
b

v
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An alternative form of this relation is obtained by using the cyclic relation:

Substituting the result into Eq. 12–45 gives

(12–46)

This relation can be expressed in terms of two other thermodynamic proper-

ties called the volume expansivity b and the isothermal compressibility a,

which are defined as (Fig. 12–10)

(12–47)

and

(12–48)

Substituting these two relations into Eq. 12–46, we obtain a third general

relation for cp � c
v
:

(12–49)

It is called the Mayer relation in honor of the German physician and physicist

J. R. Mayer (1814–1878). We can draw several conclusions from this equation:

1. The isothermal compressibility a is a positive quantity for all sub-

stances in all phases. The volume expansivity could be negative for some

substances (such as liquid water below 4°C), but its square is always positive

or zero. The temperature T in this relation is thermodynamic temperature,

which is also positive. Therefore we conclude that the constant-pressure spe-

cific heat is always greater than or equal to the constant-volume specific heat:

(12–50)

2. The difference between cp and c
v

approaches zero as the absolute

temperature approaches zero.

3. The two specific heats are identical for truly incompressible sub-

stances since v � constant. The difference between the two specific heats is

very small and is usually disregarded for substances that are nearly incom-

pressible, such as liquids and solids.

cp 
 c
v

cp � c
v

�
vTb2

a

a � �
1

v

a 0v
0P
b

T

b �
1

v

a 0v
0T
b

P

cp � c
v

� �T a 0v
0T
b 2

P 

a 0P
0v
b

T

a 0P
0T
b

v

a 0T
0v
b

P

a 0v
0P
b

T

� �1S a 0P
0T
b

v

� � a 0v
0T
b

P

a 0P
0v
b

T
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20°C
100 kPa

1 kg

21°C
100 kPa

1 kg

20°C
100 kPa

1 kg

21°C
100 kPa

1 kg

(a) A substance with a large β

(b) A substance with a small β

∂v
––
      (     )∂T    P

∂
––
      (     )∂T    P

v

FIGURE 12–10

The volume expansivity (also called

the coefficient of volumetric

expansion) is a measure of the change

in volume with temperature at

constant pressure.

EXAMPLE 12–7 Internal Energy Change of a van der Waals Gas

Derive a relation for the internal energy change as a gas that obeys the van

der Waals equation of state. Assume that in the range of interest c
v

varies

according to the relation c
v

� c1 � c2T, where c1 and c2 are constants.

Solution A relation is to be obtained for the internal energy change of a

van der Waals gas.
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Analysis The change in internal energy of any simple compressible system

in any phase during any process can be determined from Eq. 12–30:

The van der Waals equation of state is

Then

Thus, 

Substituting gives

Integrating yields

which is the desired relation.

u2 � u1 � c1 1T2 � T1 2 �
c2

2
1T 2

2 � T 2
1 2 � a a 1

v1

�
1

v2

b
u2 � u1 � �

T2

T1

 1c1 � c2T 2  dT � �
v2

v1

 
a

v
2
 dv

T a 0P
0T
b

v

� P �
RT

v � b
�

RT

v � b
�

a

v
2

�
a

v
2

a 0P
0T
b

v

�
R

v � b

P �
RT

v � b
�

a

v
2

u2 � u1 � �
T2

T1

 c
v
 dT � �

v2

v1

 cT a 0P
0T
b

v

� P d  dv

EXAMPLE 12–8 Internal Energy as a Function of Temperature Alone

Show that the internal energy of (a) an ideal gas and (b) an incompressible

substance is a function of temperature only, u � u(T).

Solution It is to be shown that u � u(T) for ideal gases and incompressible

substances.

Analysis The differential change in the internal energy of a general simple

compressible system is given by Eq. 12–29 as

(a) For an ideal gas Pv � RT. Then

Thus,

To complete the proof, we need to show that c
v

is not a function of v either.

This is done with the help of Eq. 12–42:a 0cv

0v
b

T

� T a 02P
0T 2
b

v

du � c
v
 dT

T a 0P
0T
b

v

� P � T a R

v

b � P � P � P � 0

du � c
v
 dT� cT a 0P

0T
b

v

� P d  dv
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For an ideal gas P � RT/v. Then

Thus, 

which states that c
v

does not change with specific volume. That is, c
v

is not

a function of specific volume either. Therefore we conclude that the internal

energy of an ideal gas is a function of temperature only (Fig. 12–11).

(b) For an incompressible substance, v � constant and thus dv � 0. Also

from Eq. 12–49, cp � c
v

� c since a � b � 0 for incompressible substances.

Then Eq. 12–29 reduces to

Again we need to show that the specific heat c depends on temperature only

and not on pressure or specific volume. This is done with the help of

Eq. 12–43:

since v � constant. Therefore, we conclude that the internal energy of a

truly incompressible substance depends on temperature only.

a 0cp

0P
b

T

� �T a 02v
0T 2
b

P

� 0

du � c dT

a 0cv

0v
b

T

� 0

a 0P
0T
b

v

�
R

v

ÉandÉa 02P
0T 2
b

v

� c 0 1R>v 2
0T

d
v

� 0

EXAMPLE 12–9 The Specific Heat Difference of an Ideal Gas

Show that cp � c
v

� R for an ideal gas.

Solution It is to be shown that the specific heat difference for an ideal gas

is equal to its gas constant.

Analysis This relation is easily proved by showing that the right-hand side

of Eq. 12–46 is equivalent to the gas constant R of the ideal gas:

Substituting,

Therefore,

cp � c
v

� R

�T a 0v
0T
b 2

P

a 0P
0v
b

T

� �T a R

P
b 2 a�

P

v

b � R

 v �
RT

P
S a 0v

0T
b 2

P

� a R

P
b 2

 P �
RT

v

S a 0P
0v
b

T

� �
RT

v
2

�
P

v

 

 cp � c
v

� �T a 0v
0T
b 2

P

a 0P
0v
b

T

AIR

LAKE

u = u(T )u = u(T )

c
v 

= c
v
 (T )

cp = cp(T )

u = u(T )

c = c(T )

FIGURE 12–11

The internal energies and specific

heats of ideal gases and

incompressible substances depend on

temperature only.



12–5 ■ THE JOULE-THOMSON COEFFICIENT

When a fluid passes through a restriction such as a porous plug, a capillary

tube, or an ordinary valve, its pressure decreases. As we have shown in

Chap. 5, the enthalpy of the fluid remains approximately constant during

such a throttling process. You will remember that a fluid may experience a

large drop in its temperature as a result of throttling, which forms the basis

of operation for refrigerators and air conditioners. This is not always the

case, however. The temperature of the fluid may remain unchanged, or it

may even increase during a throttling process (Fig. 12–12).

The temperature behavior of a fluid during a throttling (h � constant)

process is described by the Joule-Thomson coefficient, defined as

(12–51)

Thus the Joule-Thomson coefficient is a measure of the change in tempera-

ture with pressure during a constant-enthalpy process. Notice that if

during a throttling process.

A careful look at its defining equation reveals that the Joule-Thomson

coefficient represents the slope of h � constant lines on a T-P diagram.

Such diagrams can be easily constructed from temperature and pressure

measurements alone during throttling processes. A fluid at a fixed tempera-

ture and pressure T1 and P1 (thus fixed enthalpy) is forced to flow through a

porous plug, and its temperature and pressure downstream (T2 and P2) are

measured. The experiment is repeated for different sizes of porous plugs,

each giving a different set of T2 and P2. Plotting the temperatures against

the pressures gives us an h � constant line on a T-P diagram, as shown in

Fig. 12–13. Repeating the experiment for different sets of inlet pressure and

temperature and plotting the results, we can construct a T-P diagram for a

substance with several h � constant lines, as shown in Fig. 12–14.

Some constant-enthalpy lines on the T-P diagram pass through a point of

zero slope or zero Joule-Thomson coefficient. The line that passes through

these points is called the inversion line, and the temperature at a point

where a constant-enthalpy line intersects the inversion line is called the

inversion temperature. The temperature at the intersection of the P � 0

line (ordinate) and the upper part of the inversion line is called the maxi-

mum inversion temperature. Notice that the slopes of the h � constant

lines are negative (mJT � 0) at states to the right of the inversion line and

positive (mJT 	 0) to the left of the inversion line.

A throttling process proceeds along a constant-enthalpy line in the direc-

tion of decreasing pressure, that is, from right to left. Therefore, the tempera-

ture of a fluid increases during a throttling process that takes place on the

right-hand side of the inversion line. However, the fluid temperature

decreases during a throttling process that takes place on the left-hand side of

the inversion line. It is clear from this diagram that a cooling effect cannot

be achieved by throttling unless the fluid is below its maximum inversion

m JT • 6 0 Étemperature increases

� 0 Étemperature remains constant

7 0 Étemperature decreases

m � a 0T
0P
b

h
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T1 = 20°C T2 = 20°C
>
<

P1 = 800 kPa P2 = 200 kPa

FIGURE 12–12

The temperature of a fluid may

increase, decrease, or remain constant

during a throttling process.

T

P

Exit states

Inlet

state

h = constant line

2
2 2

2

2

1

P1

P2, T2

(varied)

P1, T1

(fixed)

FIGURE 12–13

The development of an h � constant

line on a P-T diagram.

Maximum inversion

temperature

Inversion line

h = const.

µJT > 0 µJT < 0

T

P

FIGURE 12–14

Constant-enthalpy lines of a substance

on a T-P diagram.



temperature. This presents a problem for substances whose maximum inver-

sion temperature is well below room temperature. For hydrogen, for example,

the maximum inversion temperature is �68°C. Thus hydrogen must be

cooled below this temperature if any further cooling is to be achieved by

throttling.

Next we would like to develop a general relation for the Joule-Thomson

coefficient in terms of the specific heats, pressure, specific volume, and

temperature. This is easily accomplished by modifying the generalized rela-

tion for enthalpy change (Eq. 12–35)

For an h � constant process we have dh � 0. Then this equation can be

rearranged to give

(12–52)

which is the desired relation. Thus, the Joule-Thomson coefficient can be

determined from a knowledge of the constant-pressure specific heat and the

P-v-T behavior of the substance. Of course, it is also possible to predict the

constant-pressure specific heat of a substance by using the Joule-Thomson

coefficient, which is relatively easy to determine, together with the P-v-T

data for the substance.

�
1

cp

 cv � T a 0v
0T
b

P

d � a 0T
0P
b

h

� m JT

dh � cp dT � cv � T a 0v
0T
b

P

d  dP
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EXAMPLE 12–10 Joule-Thomson Coefficient of an Ideal Gas

Show that the Joule-Thomson coefficient of an ideal gas is zero.

Solution It is to be shown that mJT � 0 for an ideal gas.

Analysis For an ideal gas v � RT/P, and thus

Substituting this into Eq. 12–52 yields

Discussion This result is not surprising since the enthalpy of an ideal gas is a

function of temperature only, h � h(T), which requires that the temperature

remain constant when the enthalpy remains constant. Therefore, a throttling

process cannot be used to lower the temperature of an ideal gas (Fig. 12–15).

mJT �
�1

cp

cv � T a 0v
0T
b

P

d �
�1

cp

cv � T 
R

P
d � �

1

cp

1v � v 2 � 0

a 0v
0T
b

P

�
R

P

12–6 ■ THE �h, �u, AND �s OF REAL GASES

We have mentioned many times that gases at low pressures behave as ideal

gases and obey the relation Pv � RT. The properties of ideal gases are rela-

tively easy to evaluate since the properties u, h, c
v
, and cp depend on tem-

perature only. At high pressures, however, gases deviate considerably from

ideal-gas behavior, and it becomes necessary to account for this deviation.

T

P1 P2 P

h = constant line 

FIGURE 12–15

The temperature of an ideal gas

remains constant during a throttling

process since h � constant and T �

constant lines on a T-P diagram

coincide.



In Chap. 3 we accounted for the deviation in properties P, v, and T by either

using more complex equations of state or evaluating the compressibility fac-

tor Z from the compressibility charts. Now we extend the analysis to evalu-

ate the changes in the enthalpy, internal energy, and entropy of nonideal

(real) gases, using the general relations for du, dh, and ds developed earlier.

Enthalpy Changes of Real Gases
The enthalpy of a real gas, in general, depends on the pressure as well as on

the temperature. Thus the enthalpy change of a real gas during a process can

be evaluated from the general relation for dh (Eq. 12–36)

where P1, T1 and P2, T2 are the pressures and temperatures of the gas at the

initial and the final states, respectively. For an isothermal process dT � 0,

and the first term vanishes. For a constant-pressure process, dP � 0, and the

second term vanishes.

Properties are point functions, and thus the change in a property between

two specified states is the same no matter which process path is followed.

This fact can be exploited to greatly simplify the integration of Eq. 12–36.

Consider, for example, the process shown on a T-s diagram in Fig. 12–16.

The enthalpy change during this process h2 � h1 can be determined by per-

forming the integrations in Eq. 12–36 along a path that consists of

two isothermal (T1 � constant and T2 � constant) lines and one isobaric

(P0 � constant) line instead of the actual process path, as shown in

Fig. 12–16.

Although this approach increases the number of integrations, it also sim-

plifies them since one property remains constant now during each part of

the process. The pressure P0 can be chosen to be very low or zero, so that

the gas can be treated as an ideal gas during the P0 � constant process.

Using a superscript asterisk (*) to denote an ideal-gas state, we can express

the enthalpy change of a real gas during process 1-2 as

(12–53)

where, from Eq. 12–36,

(12–54)

(12–55)

(12–56)

The difference between h and h* is called the enthalpy departure, and it

represents the variation of the enthalpy of a gas with pressure at a fixed

temperature. The calculation of enthalpy departure requires a knowledge of

the P-v-T behavior of the gas. In the absence of such data, we can use the

relation Pv � ZRT, where Z is the compressibility factor. Substituting

 h*
1 � h1 � 0 � �

P1
*

P1

cv � T a 0v
0T
b

P

d
T�T1

dP � � �
P1

P0

 cv � T a 0v
0T
b

P

d
T�T1

dP

 h*
2 � h*

1 � �
T2

T1

cp dT � 0 � �
T2

T1

cp0 1T 2  dT 

 h2 � h*
2 � 0 � �

P2

P*
2

 c v � T a 0v
0T
b

P

d
T�T2

 dP � �
P2

P0

 cv � T a 0v
0T
b

P

d
T�T2

dP

h2 � h1 � 1h2 � h*
2 2 � 1h*

2 � h*
1 2 � 1h*

1 � h1 2

h2 � h1 � �
T2

T1

cp dT � �
P2

P1

 cv � T a 0v
0T
b

P

d  dP

670 | Thermodynamics

T

s

Actual

process

path

Alternative

process

path

T2

T1

1
1*

2*
2

P 0
 =

 0P 2

P 1

FIGURE 12–16
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the enthalpy changes of real gases.



v � ZRT/P and simplifying Eq. 12–56, we can write the enthalpy departure

at any temperature T and pressure P as

The above equation can be generalized by expressing it in terms of the reduced

coordinates, using T � TcrTR and P � PcrPR. After some manipulations, the

enthalpy departure can be expressed in a nondimensionalized form as

(12–57)

where Zh is called the enthalpy departure factor. The integral in the above

equation can be performed graphically or numerically by employing data from

the compressibility charts for various values of PR and TR. The values of Zh are

presented in graphical form as a function of PR and TR in Fig. A–29. This

graph is called the generalized enthalpy departure chart, and it is used to

determine the deviation of the enthalpy of a gas at a given P and T from the

enthalpy of an ideal gas at the same T. By replacing h* by hideal for clarity, Eq.

12–53 for the enthalpy change of a gas during a process 1-2 can be rewritten as

(12–58)

or

(12–59)

where the values of Zh are determined from the generalized enthalpy depar-

ture chart and (h
–

2 � h
–

1)ideal is determined from the ideal-gas tables. Notice

that the last terms on the right-hand side are zero for an ideal gas.

Internal Energy Changes of Real Gases
The internal energy change of a real gas is determined by relating it to the

enthalpy change through the definition h
–

� u– � Pv
–

� u– � ZRuT:

(12–60)

Entropy Changes of Real Gases
The entropy change of a real gas is determined by following an approach

similar to that used above for the enthalpy change. There is some difference

in derivation, however, owing to the dependence of the ideal-gas entropy on

pressure as well as the temperature.

The general relation for ds was expressed as (Eq. 12–41)

where P1, T1 and P2, T2 are the pressures and temperatures of the gas at the

initial and the final states, respectively. The thought that comes to mind at

this point is to perform the integrations in the previous equation first along a

T1 � constant line to zero pressure, then along the P � 0 line to T2, and

s2 � s1 � �
T2

T1

 
cp

T
 dT � �

P2

P1

 a 0v
0T
b

P

 dP

u�2 � u�1 � 1h2 � h1 2 � Ru 1Z 2 T2 � Z 1T1 2

h2 � h1 � 1h2 � h1 2 ideal � RTcr 1Zh2
� Zh1

2
h2 � h1 � 1h2 � h1 2 ideal � RuTcr 1Zh2

� Zh1
2

Z h �
1h* � h 2T

RuTcr

� T 2
R �

PR

0
 

a 0Z
0TR

b
PR

d 1ln PR 2

1h* � h 2T � �RT 2 �
P

0

a 0Z
0T
b

P

dP

P
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finally along the T2 � constant line to P2, as we did for the enthalpy. This

approach is not suitable for entropy-change calculations, however, since it

involves the value of entropy at zero pressure, which is infinity. We can

avoid this difficulty by choosing a different (but more complex) path

between the two states, as shown in Fig. 12–17. Then the entropy change

can be expressed as

(12–61)

States 1 and 1* are identical (T1 � T1
* and P1 � P1

*) and so are states 2

and 2*. The gas is assumed to behave as an ideal gas at the imaginary states

1* and 2* as well as at the states between the two. Therefore, the entropy

change during process 1*-2* can be determined from the entropy-change

relations for ideal gases. The calculation of entropy change between an

actual state and the corresponding imaginary ideal-gas state is more

involved, however, and requires the use of generalized entropy departure

charts, as explained below.

Consider a gas at a pressure P and temperature T. To determine how much

different the entropy of this gas would be if it were an ideal gas at the same

temperature and pressure, we consider an isothermal process from the actual

state P, T to zero (or close to zero) pressure and back to the imaginary ideal-

gas state P*, T* (denoted by superscript *), as shown in Fig. 12–17. The

entropy change during this isothermal process can be expressed as

where v � ZRT/P and v* � videal � RT/P. Performing the differentiations

and rearranging, we obtain

By substituting T � TcrTR and P � PcrPR and rearranging, the entropy

departure can be expressed in a nondimensionalized form as

(12–62)

The difference (s–* � s–)T,P is called the entropy departure and Zs is called

the entropy departure factor. The integral in the above equation can be

performed by using data from the compressibility charts. The values of Zs

are presented in graphical form as a function of PR and TR in Fig. A–30.

This graph is called the generalized entropy departure chart, and it is

used to determine the deviation of the entropy of a gas at a given P and T

from the entropy of an ideal gas at the same P and T. Replacing s* by sideal

for clarity, we can rewrite Eq. 12–61 for the entropy change of a gas during

a process 1-2 as

(12–63)s�2 � s�1 � 1 s�2 � s�1 2 ideal � Ru 1Zs2
� Zs1

2

Z s �
1 s�* � s� 2T,P

Ru

� �
PR

0

 cZ � 1 � TR a 0Z
0TR

b
PR

d  d 1ln PR 2

1sP � sP
* 2T � �

P

0

 c 11 � Z 2R
P

�
RT

P
a 0Zr

0T
b

P

d  dP

 � � �
P

0

 a 0v
0T
b

P

dP � �
0

P

 a 0v*

0T
b

P

 dP

 1sP � sP
* 2T � 1sP � s0

* 2T � 1s 0
* � sP

* 2T

s2 � s1 � 1s2 � sb
*2 � 1sb

* � s2
* 2 � 1s2

* � s1
* 2 � 1s1

* � sa
* 2 � 1sa

* � s1 2
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or

(12–64)

where the values of Zs are determined from the generalized entropy depar-

ture chart and the entropy change (s2 � s1)ideal is determined from the ideal-

gas relations for entropy change. Notice that the last terms on the right-hand

side are zero for an ideal gas.

EXAMPLE 12–11 The �h and �s of Oxygen at High Pressures

Determine the enthalpy change and the entropy change of oxygen per unit

mole as it undergoes a change of state from 220 K and 5 MPa to 300 K and

10 MPa (a) by assuming ideal-gas behavior and (b) by accounting for the

deviation from ideal-gas behavior.

Solution Oxygen undergoes a process between two specified states. The

enthalpy and entropy changes are to be determined by assuming ideal-gas

behavior and by accounting for the deviation from ideal-gas behavior.

Analysis The critical temperature and pressure of oxygen are Tcr � 154.8 K

and Pcr � 5.08 MPa (Table A–1), respectively. The oxygen remains above its

critical temperature; therefore, it is in the gas phase, but its pressure is

quite high. Therefore, the oxygen will deviate from ideal-gas behavior and

should be treated as a real gas.

(a) If the O2 is assumed to behave as an ideal gas, its enthalpy will depend

on temperature only, and the enthalpy values at the initial and the final tem-

peratures can be determined from the ideal-gas table of O2 (Table A–19) at

the specified temperatures:

The entropy depends on both temperature and pressure even for ideal gases.

Under the ideal-gas assumption, the entropy change of oxygen is determined

from

(b) The deviation from the ideal-gas behavior can be accounted for by deter-

mining the enthalpy and entropy departures from the generalized charts at

each state:

TR1
�

T1

Tcr

�
220 K

154.8 K
� 1.42

PR1
�

P1

Pcr

�
5 MPa

5.08 MPa
� 0.98

∂ Z h1
� 0.53, Z s1

� 0.25

 � 3.28 kJ/kmol #  K

 � 1205.213 � 196.171 2  kJ>kmol #  K � 18.314 kJ>kmol #  K 2 ln 
10 MPa

5 MPa

 1 s�2 � s�1 2 ideal � s�°2 � s�°1 � Ru ln 
P2

P1

 � 2332 kJ/kmol

 � 18736 � 6404 2  kJ>kmol

 1h2 � h1 2 ideal � h2,ideal � h1,ideal

s2 � s1 � 1s2 � s1 2 ideal � R 1Zs2
� Zs1

2
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and

Then the enthalpy and entropy changes of oxygen during this process are

determined by substituting the values above into Eqs. 12–58 and 12–63, 

and

Discussion Note that the ideal-gas assumption would underestimate the

enthalpy change of the oxygen by 2.7 percent and the entropy change by

11.4 percent.

 � 3.70 kJ/kmol #  K

 � 3.28 kJ>kmol #  K � 18.314 kJ>kmol #  K 2 10.20 � 0.25 2 s�2 � s�1 � 1 s�2 � s�1 2 ideal � Ru 1Z s2
� Z s1

2
 � 2396 kJ/kmol

 � 2332 kJ>kmol �  18.314 kJ>kmol #  K 2 3154.8 K 10.48 � 0.53 2 4 h2 � h1 � 1h2 � h1 2 ideal � RuTcr 1Z h2
� Z h1

2

TR2
�

T2

Tcr

�
300 K

154.8 K
� 1.94

PR2
�

P2

Pcr

�
10 MPa

5.08 MPa
� 1.97

∂ Z h2
� 0.48, Z s2

� 0.20

Some thermodynamic properties can be measured directly, but

many others cannot. Therefore, it is necessary to develop

some relations between these two groups so that the properties

that cannot be measured directly can be evaluated. The deriva-

tions are based on the fact that properties are point functions,

and the state of a simple, compressible system is completely

specified by any two independent, intensive properties.

The equations that relate the partial derivatives of proper-

ties P, v, T, and s of a simple compressible substance to each

other are called the Maxwell relations. They are obtained

from the four Gibbs equations, expressed as

 dg � �s dT � v dP

 da � �s dT � P dv

 dh � T ds � v dP

 du � T ds � P dv

SUMMARY

The Maxwell relations are

The Clapeyron equation enables us to determine the enthalpy

change associated with a phase change from a knowledge of

P, v, and T data alone. It is expressed asa dP

dT
b

sat

�
hfg

T vfg

 a 0s
0P
b

T

� � a 0v
0T
b

P

 a 0s
0v
b

T

� a 0P
0T
b

v

 a 0T
0P
b

s

� a 0v
0s
b

P

 a 0T
0v
b

s

� � a 0P
0s
b

v
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For liquid–vapor and solid–vapor phase-change processes at

low pressures, it can be approximated as

The changes in internal energy, enthalpy, and entropy of a

simple compressible substance can be expressed in terms of

pressure, specific volume, temperature, and specific heats

alone as

or

For specific heats, we have the following general relations:

 cp � c
v

� �T a 0v
0T
b 2

P

a 0P
0v
b

T

 cp,T � cp0,T � �T �
P

0

a 02v
0T 2
b

P

 dP

 a 0cp

0P
b

T

� �T a 02v
0T 2
b

P

 a 0cv

0v
b

T

� T a 02P
0T 2
b

v

 ds �
cp

T
 dT � a 0v

0T
b

P

 dP

 ds �
c

v

T
 dT � a 0P

0T
b

v

 dv

 dh � cp dT � cv � T a 0v
0T
b

P

d  dP

 du � c
v
 dT � cT a 0P

0T
b

v

� P d  dv

ln a P2

P1

b
sat

�
hfg

R
a T2 � T1

T1T2

b
sat

where b is the volume expansivity and a is the isothermal

compressibility, defined as

The difference cp � c
v

is equal to R for ideal gases and to

zero for incompressible substances.

The temperature behavior of a fluid during a throttling (h �

constant) process is described by the Joule-Thomson coefficient,

defined as

The Joule-Thomson coefficient is a measure of the change in

temperature of a substance with pressure during a constant-

enthalpy process, and it can also be expressed as

The enthalpy, internal energy, and entropy changes of real gases

can be determined accurately by utilizing generalized enthalpy

or entropy departure charts to account for the deviation from

the ideal-gas behavior by using the following relations:

where the values of Zh and Zs are determined from the gener-

alized charts.

 s�2 � s�1 � 1 s�2 � s�1 2 ideal � Ru 1Zs2
� Zs1

2 u�2 � u�1 � 1h2 � h1 2 � Ru 1Z2T2 � Z1T1 2 h2 � h1 � 1h2 � h1 2 ideal � RuTcr 1Zh2
� Zh1

2

mJT � �
1

cp

 cv � T a 0v
0T
b

P

d

mJT � a 0T
0P
b

h

b �
1

v

 a 0v
0T
b

P

ÉandÉa � �
1

v

 a 0v
0P
b

T

 cp � c
v

�
vTb2

a
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Partial Derivatives and Associated Relations

12–1C Consider the function z(x, y). Plot a differential sur-

face on x-y-z coordinates and indicate �x, dx, �y, dy, (�z)x,

(�z)y, and dz.

12–2C What is the difference between partial differentials

and ordinary differentials?

PROBLEMS*

*Problems designated by a “C” are concept questions, and students

are encouraged to answer them all. Problems designated by an “E”

are in English units, and the SI users can ignore them. Problems

with a CD-EES icon are solved using EES, and complete solutions

together with parametric studies are included on the enclosed DVD.

Problems with a computer-EES icon are comprehensive in nature,

and are intended to be solved with a computer, preferably using the

EES software that accompanies this text.



12–3C Consider the function z(x, y), its partial derivatives

(�z/�x)y and (�z/�y)x, and the total derivative dz/dx.

(a) How do the magnitudes (�x)y and dx compare?

(b) How do the magnitudes (�z)y and dz compare?

(c) Is there any relation among dz, (�z)x, and (�z)y?

12–4C Consider a function z(x, y) and its partial derivative

(�z/�y)x. Under what conditions is this partial derivative equal

to the total derivative dz/dy?

12–5C Consider a function z(x, y) and its partial derivative

(�z/�y)x. If this partial derivative is equal to zero for all values

of x, what does it indicate?

12–6C Consider a function z(x, y) and its partial derivative

(�z/�y)x. Can this partial derivative still be a function of x?

12–7C Consider a function f(x) and its derivative df/dx.

Can this derivative be determined by evaluating dx/df and

taking its inverse?

12–8 Consider air at 400 K and 0.90 m3/kg. Using Eq. 12–3,

determine the change in pressure corresponding to an increase

of (a) 1 percent in temperature at constant specific volume,

(b) 1 percent in specific volume at constant temperature, and

(c) 1 percent in both the temperature and specific volume.

12–9 Repeat Problem 12–8 for helium.

12–10 Prove for an ideal gas that (a) the P � constant lines

on a T-v diagram are straight lines and (b) the high-pressure

lines are steeper than the low-pressure lines.

12–11 Derive a relation for the slope of the v � constant

lines on a T-P diagram for a gas that obeys the van der Waals

equation of state. Answer: (v � b)/R

12–12 Nitrogen gas at 400 K and 300 kPa behaves as an

ideal gas. Estimate the cp and c
v

of the nitrogen at this state,

using enthalpy and internal energy data from Table A–18, and

compare them to the values listed in Table A–2b.

12–13E Nitrogen gas at 600 R and 30 psia behaves as an

ideal gas. Estimate the cp and c
v

of the nitrogen at this state,

using enthalpy and internal energy data from Table A–18E,

and compare them to the values listed in Table A–2Eb.

Answers: 0.249 Btu/lbm · R, 0.178 Btu/lbm · R

12–14 Consider an ideal gas at 400 K and 100 kPa. As a

result of some disturbance, the conditions of the gas change

to 404 K and 96 kPa. Estimate the change in the specific vol-

ume of the gas using (a) Eq. 12–3 and (b) the ideal-gas rela-

tion at each state.

12–15 Using the equation of state P(v � a) � RT, verify

(a) the cyclic relation and (b) the reciprocity relation at 

constant v.

The Maxwell Relations

12–16 Verify the validity of the last Maxwell relation

(Eq. 12–19) for refrigerant-134a at 80°C and 1.2 MPa.
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12–17 Reconsider Prob. 12–16. Using EES (or other)

software, verify the validity of the last Maxwell

relation for refrigerant-134a at the specified state.

12–18E Verify the validity of the last Maxwell relation

(Eq. 12–19) for steam at 800°F and 400 psia.

12–19 Using the Maxwell relations, determine a relation for

(�s/�P)T for a gas whose equation of state is P(v � b) � RT.

Answer: �R/P

12–20 Using the Maxwell relations, determine a relation

for (�s/�v)T for a gas whose equation of state is (P � a/v2)

(v � b) � RT.

12–21 Using the Maxwell relations and the ideal-gas equa-

tion of state, determine a relation for (�s/�v)T for an ideal

gas. Answer: R/v

The Clapeyron Equation

12–22C What is the value of the Clapeyron equation in

thermodynamics?

12–23C Does the Clapeyron equation involve any approxi-

mations, or is it exact?

12–24C What approximations are involved in the Clapeyron-

Clausius equation?

12–25 Using the Clapeyron equation, estimate the enthalpy

of vaporization of refrigerant-134a at 40°C, and compare it to

the tabulated value.

12–26 Reconsider Prob. 12–25. Using EES (or other)

software, plot the enthalpy of vaporization of

refrigerant-134a as a function of temperature over the tempera-

ture range �20 to 80°C by using the Clapeyron equation and

the refrigerant-134a data in EES. Discuss your results.

12–27 Using the Clapeyron equation, estimate the enthalpy

of vaporization of steam at 300 kPa, and compare it to the

tabulated value.

12–28 Calculate the hfg and sfg of steam at 120°C from

the Clapeyron equation, and compare them to the tabulated

values.

12–29E Determine the hfg of refrigerant-134a at 50°F

on the basis of (a) the Clapeyron equation

and (b) the Clapeyron-Clausius equation. Compare your

results to the tabulated hfg value.

12–30 Plot the enthalpy of vaporization of steam as a

function of temperature over the temperature

range 10 to 200°C by using the Clapeyron equation and

steam data in EES.

12–31 Using the Clapeyron-Clausius equation and the triple-

point data of water, estimate the sublimation pressure of

water at �30°C and compare to the value in Table A–8.
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General Relations for du, dh, ds, c
v
, and cp

12–32C Can the variation of specific heat cp with pressure

at a given temperature be determined from a knowledge of P-

v-T data alone?

12–33 Show that the enthalpy of an ideal gas is a function

of temperature only and that for an incompressible substance

it also depends on pressure.

12–34 Derive expressions for (a) �u, (b) �h, and (c) �s for

a gas that obeys the van der Waals equation of state for an

isothermal process.

12–35 Derive expressions for (a) �u, (b) �h, and (c) �s for

a gas whose equation of state is P(v � a) � RT for an isother-

mal process. Answers: (a) 0, (b) a(P2 � P1), (c) �R ln (P2/P1)

12–36 Derive expressions for (�u/�P)T and (�h/�v)T in

terms of P, v, and T only.

12–37 Derive an expression for the specific-heat difference

cp � c
v

for (a) an ideal gas, (b) a van der Waals gas, and

(c) an incompressible substance.

12–38 Estimate the specific-heat difference cp � c
v

for liquid

water at 15 MPa and 80°C. Answer: 0.32 kJ/kg · K

12–39E Estimate the specific-heat difference cp � c
v

for liq-

uid water at 1000 psia and 150°F. Answer: 0.057 Btu/lbm · R

12–40 Derive a relation for the volume expansivity b and

the isothermal compressibility a (a) for an ideal gas and

(b) for a gas whose equation of state is P(v � a) � RT.

12–41 Estimate the volume expansivity b and the isothermal

compressibility a of refrigerant-134a at 200 kPa and 30°C.

The Joule-Thomson Coefficient

12–42C What does the Joule-Thomson coefficient represent?

12–43C Describe the inversion line and the maximum

inversion temperature.

12–44C The pressure of a fluid always decreases during

an adiabatic throttling process. Is this also the case for the

temperature?

12–45C Does the Joule-Thomson coefficient of a substance

change with temperature at a fixed pressure?

12–46C Will the temperature of helium change if it is throt-

tled adiabatically from 300 K and 600 kPa to 150 kPa?

12–47 Consider a gas whose equation of state is P(v � a) �

RT, where a is a positive constant. Is it possible to cool this

gas by throttling?

12–48 Derive a relation for the Joule-Thomson coefficient

and the inversion temperature for a gas whose equation of

state is (P � a/v2)v � RT.

12–49 Estimate the Joule-Thomson coefficient of steam at

(a) 3 MPa and 300°C and (b) 6 MPa and 500°C.

12–50E Estimate the Joule-Thomson coefficient of

nitrogen at (a) 200 psia and 500 R and

(b) 2000 psia and 400 R. Use nitrogen properties from EES

or other source.

12–51E Reconsider Prob. 12–50E. Using EES (or

other) software, plot the Joule-Thomson coef-

ficient for nitrogen over the pressure range 100 to 1500 psia

at the enthalpy values 100, 175, and 225 Btu/lbm. Discuss

the results.

12–52 Estimate the Joule-Thomson coefficient of refriger-

ant-134a at 0.7 MPa and 50°C.

12–53 Steam is throttled slightly from 1 MPa and 300°C.

Will the temperature of the steam increase, decrease, or

remain the same during this process?

The dh, du, and ds of Real Gases

12–54C What is the enthalpy departure?

12–55C On the generalized enthalpy departure chart, the

normalized enthalpy departure values seem to approach zero

as the reduced pressure PR approaches zero. How do you

explain this behavior?

12–56C Why is the generalized enthalpy departure chart pre-

pared by using PR and TR as the parameters instead of P and T ?

12–57 Determine the enthalpy of nitrogen, in kJ/kg, at

175 K and 8 MPa using (a) data from the ideal-gas nitrogen

table and (b) the generalized enthalpy departure chart. Com-

pare your results to the actual value of 125.5 kJ/kg. Answers:

(a) 181.5 kJ/kg, (b) 121.6 kJ/kg

12–58E Determine the enthalpy of nitrogen, in Btu/lbm, at

400 R and 2000 psia using (a) data from the ideal-gas nitro-

gen table and (b) the generalized enthalpy chart. Compare

your results to the actual value of 177.8 Btu/lbm.

12–59 What is the error involved in the (a) enthalpy and

(b) internal energy of CO2 at 350 K and 10 MPa if it is

assumed to be an ideal gas? Answers: (a) 50%, (b) 49%

12–60 Determine the enthalpy change and the entropy

change of nitrogen per unit mole as it undergoes a change of

state from 225 K and 6 MPa to 320 K and 12 MPa, (a) by

assuming ideal-gas behavior and (b) by accounting for the

deviation from ideal-gas behavior through the use of general-

ized charts.

12–61 Determine the enthalpy change and the entropy

change of CO2 per unit mass as it undergoes a change of state

from 250 K and 7 MPa to 280 K and 12 MPa, (a) by assum-

ing ideal-gas behavior and (b) by accounting for the deviation

from ideal-gas behavior.

12–62 Methane is compressed adiabatically by a steady-flow

compressor from 2 MPa and �10°C to 10 MPa and 110°C at a

rate of 0.55 kg/s. Using the generalized charts, determine the

required power input to the compressor. Answer: 133 kW



12–63 Propane is compressed isothermally by a piston–

cylinder device from 100°C and 1 MPa to 4

MPa. Using the generalized charts, determine the work done

and the heat transfer per unit mass of propane.

12–64 Reconsider Prob. 12–63. Using EES (or other)

software, extend the problem to compare the

solutions based on the ideal-gas assumption, generalized chart

data, and real fluid data. Also extend the solution to methane.

12–65E Propane is compressed isothermally by a piston–

cylinder device from 200°F and 200 psia to 800 psia. Using

the generalized charts, determine the work done and the heat

transfer per unit mass of the propane.

Answers: 45.3 Btu/lbm, 141 Btu/lbm

12–66 Determine the exergy destruction associated with the

process described in Prob. 12–63. Assume T0 � 30°C.

12–67 Carbon dioxide enters an adiabatic nozzle at 8 MPa

and 450 K with a low velocity and leaves at 2 MPa and 350 K.

Using the generalized enthalpy departure chart, determine the

exit velocity of the carbon dioxide. Answer: 384 m/s

12–68 Reconsider Prob. 12–67. Using EES (or other)

software, compare the exit velocity to the noz-

zle assuming ideal-gas behavior, the generalized chart data,

and EES data for carbon dioxide.

12–69 A 0.08-m3 well-insulated rigid tank contains oxygen

at 220 K and 10 MPa. A paddle wheel placed in the tank is

turned on, and the temperature of the oxygen rises to 250 K.

Using the generalized charts, determine (a) the final pressure

in the tank and (b) the paddle-wheel work done during this

process. Answers: (a) 12,190 kPa, (b) 393 kJ

12–70 Carbon dioxide is contained in a constant-volume tank

and is heated from 100°C and 1 MPa to 8 MPa. Determine the

heat transfer and entropy change per unit mass of the carbon

dioxide using (a) the ideal-gas assumption, (b) the generalized

charts, and (c) real fluid data from EES or other sources.

Review Problems

12–71 For b 
 0, prove that at every point of a single-

phase region of an h-s diagram, the slope of a constant-

pressure (P � constant) line is greater than the slope of a
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constant-temperature (T � constant) line, but less than the

slope of a constant-volume (v � constant) line.

12–72 Using the cyclic relation and the first Maxwell rela-

tion, derive the other three Maxwell relations.

12–73 Starting with the relation dh � T ds + v dP, show

that the slope of a constant-pressure line on an h-s diagram

(a) is constant in the saturation region and (b) increases with

temperature in the superheated region.

12–74 Derive relations for (a) �u, (b) �h, and (c) �s of a

gas that obeys the equation of state (P + a/v 2)v � RT for an

isothermal process.

12–75 Show that

12–76 Estimate the cp of nitrogen at 300 kPa and 400 K,

using (a) the relation in the above problem and (b) its defini-

tion. Compare your results to the value listed in Table A–2b.

12–77 Steam is throttled from 4.5 MPa and 300°C to 2.5

MPa. Estimate the temperature change of the steam during

this process and the average Joule-Thomson coefficient.

Answers: �26.3°C, 13.1°C/MPa

12–78 A rigid tank contains 1.2 m3 of argon at �100°C and

1 MPa. Heat is now transferred to argon until the temperature

in the tank rises to 0°C. Using the generalized charts, deter-

mine (a) the mass of the argon in the tank, (b) the final pres-

sure, and (c) the heat transfer.

Answers: (a) 35.1 kg, (b) 1531 kPa, (c) 1251 kJ

12–79 Argon gas enters a turbine at 7 MPa and 600 K with

a velocity of 100 m/s and leaves at 1 MPa and 280 K with a

velocity of 150 m/s at a rate of 5 kg/s. Heat is being lost to

the surroundings at 25°C at a rate of 60 kW. Using the gener-

alized charts, determine (a) the power output of the turbine

and (b) the exergy destruction associated with the process.
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12–80 Reconsider Prob. 12–79. Using EES (or other)

software, solve the problem assuming steam is

the working fluid by using the generalized chart method and

EES data for steam. Plot the power output and the exergy

destruction rate for these two calculation methods against the

turbine exit pressure as it varies over the range 0.1 to 1 MPa

when the turbine exit temperature is 455 K.

12–81E Argon gas enters a turbine at 1000 psia and 1000 R

with a velocity of 300 ft/s and leaves at 150 psia and 500 R

with a velocity of 450 ft/s at a rate of 12 lbm/s. Heat is being

lost to the surroundings at 75°F at a rate of 80 Btu/s. Using

the generalized charts, determine (a) the power output of the

turbine and (b) the exergy destruction associated with the

process. Answers: (a) 922 hp, (b) 121.5 Btu/s

12–82 An adiabatic 0.2-m3 storage tank that is initially

evacuated is connected to a supply line that carries nitrogen

at 225 K and 10 MPa. A valve is opened, and nitrogen flows

into the tank from the supply line. The valve is closed when

the pressure in the tank reaches 10 MPa. Determine the final

temperature in the tank (a) treating nitrogen as an ideal gas

and (b) using generalized charts. Compare your results to the

actual value of 293 K.

12–85 The volume expansivity of water at 20°C is b �

0.207 � 10�6 K�1. Treating this value as a constant, deter-

mine the change in volume of 1 m3 of water as it is heated

from 10°C to 30°C at constant pressure.

12–86 The volume expansivity b values of copper at 300 K

and 500 K are 49.2 � 10�6 K�1 and 54.2 � 10�6 K�1,

respectively, and b varies almost linearly in this temperature

range. Determine the percent change in the volume of a cop-

per block as it is heated from 300 K to 500 K at atmospheric

pressure.

12–87 Starting with mJT � (1/cp) [T(�v/�T )p � v] and not-

ing that Pv � ZRT, where Z � Z(P, T ) is the compressibility

factor, show that the position of the Joule-Thomson coeffi-

cient inversion curve on the T-P plane is given by the equa-

tion (�Z/�T)P � 0.

12–88 Consider an infinitesimal reversible adiabatic com-

pression or expansion process. By taking s � s(P, v) and

using the Maxwell relations, show that for this process Pv
k �

constant, where k is the isentropic expansion exponent

defined as

Also, show that the isentropic expansion exponent k reduces

to the specific heat ratio cp /c
v

for an ideal gas.

12–89 Refrigerant-134a undergoes an isothermal pro-

cess at 60°C from 3 to 0.1 MPa in a closed sys-

tem. Determine the work done by the refrigerant-134a by

using the tabular (EES) data and the generalized charts, in

kJ/kg.

12–90 Methane is contained in a piston–cylinder device and

is heated at constant pressure of 4 MPa from 100 to 350°C.

Determine the heat transfer, work and entropy change per

unit mass of the methane using (a) the ideal-gas assumption,

(b) the generalized charts, and (c) real fluid data from EES or

other sources.

Fundamentals of Engineering (FE) Exam Problems

12–91 A substance whose Joule-Thomson coefficient is

negative is throttled to a lower pressure. During this process,

(select the correct statement)

(a) the temperature of the substance will increase.

(b) the temperature of the substance will decrease.

(c) the entropy of the substance will remain constant.

(d) the entropy of the substance will decrease.

(e) the enthalpy of the substance will decrease.

12–92 Consider the liquid–vapor saturation curve of a pure

substance on the P-T diagram. The magnitude of the slope of

the tangent line to this curve at a temperature T (in Kelvin) is

k �
v
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12–83 For a homogeneous (single-phase) simple pure sub-

stance, the pressure and temperature are independent proper-

ties, and any property can be expressed as a function of these

two properties. Taking v � v(P, T), show that the change in

specific volume can be expressed in terms of the volume

expansivity b and isothermal compressibility a as

Also, assuming constant average values for b and a, obtain a

relation for the ratio of the specific volumes v2/v1 as a homo-

geneous system undergoes a process from state 1 to state 2.

12–84 Repeat Prob. 12–83 for an isobaric process.

dv

v

� b dT � a dP



(a) proportional to the enthalpy of vaporization hfg at that

temperature.

(b) proportional to the temperature T.

(c) proportional to the square of the temperature T.

(d) proportional to the volume change vfg at that temperature.

(e) inversely proportional to the entropy change sfg at that

temperature.

12–93 Based on the generalized charts, the error involved

in the enthalpy of CO2 at 350 K and 8 MPa if it is assumed to

be an ideal gas is

(a) 0 (b) 20% (c) 35% (d ) 26% (e) 65%

12–94 Based on data from the refrigerant-134a tables, the

Joule-Thompson coefficient of refrigerant-134a at 0.8 MPa

and 100°C is approximately

(a) 0 (b) �5°C/MPa (c) 11°C/MPa

(d ) 8°C/MPa (e) 26°C/MPa

12–95 For a gas whose equation of state is P(v � b) � RT,

the specified heat difference cp � c
v

is equal to

(a) R (b) R � b (c) R � b (d ) 0 (e) R(1 + v/b)

Design and Essay Problems

12–96 Consider the function z � z(x, y). Write an essay on

the physical interpretation of the ordinary derivative dz /dx

and the partial derivative (�z /�x)y. Explain how these two

derivatives are related to each other and when they become

equivalent.

12–97 There have been several attempts to represent the ther-

modynamic relations geometrically, the best known of these
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being Koenig’s thermodynamic square shown in the figure.

There is a systematic way of obtaining the four Maxwell rela-

tions as well as the four relations for du, dh, dg, and da from

this figure. By comparing these relations to Koenig’s diagram,

come up with the rules to obtain these eight thermodynamic

relations from this diagram.

12–98 Several attempts have been made to express the par-

tial derivatives of the most common thermodynamic prop-

erties in a compact and systematic manner in terms of

measurable properties. The work of P. W. Bridgman is per-

haps the most fruitful of all, and it resulted in the well-known

Bridgman’s table. The 28 entries in that table are sufficient to

express the partial derivatives of the eight common properties

P, T, v, s, u, h, f, and g in terms of the six properties P, v, T,

cp, b, and a, which can be measured directly or indirectly

with relative ease. Obtain a copy of Bridgman’s table and

explain, with examples, how it is used.

a T

g

Phs

u

v

FIGURE P12–97
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