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F
or the most part, we have limited our consideration so

far to flows for which density variations and thus com-

pressibility effects are negligible. In this chapter we lift

this limitation and consider flows that involve significant

changes in density. Such flows are called compressible flows,

and they are frequently encountered in devices that involve

the flow of gases at very high velocities. Compressible flow

combines fluid dynamics and thermodynamics in that both

are necessary to the development of the required theoretical

background. In this chapter, we develop the general relations

associated with one-dimensional compressible flows for an

ideal gas with constant specific heats.

We start this chapter by introducing the concepts of stag-

nation state, speed of sound, and Mach number for com-

pressible flows. The relationships between the static and

stagnation fluid properties are developed for isentropic flows of

ideal gases, and they are expressed as functions of specific-

heat ratios and the Mach number. The effects of area

changes for one-dimensional isentropic subsonic and super-

sonic flows are discussed. These effects are illustrated by

considering the isentropic flow through converging and

converging–diverging nozzles. The concept of shock waves

and the variation of flow properties across normal and oblique

shocks are discussed. Finally, we consider the effects of heat

transfer on compressible flows and examine steam nozzles.

Objectives

The objectives of Chapter 17 are to:

• Develop the general relations for compressible flows

encountered when gases flow at high speeds.

• Introduce the concepts of stagnation state, speed of sound,

and Mach number for a compressible fluid.

• Develop the relationships between the static and stagnation

fluid properties for isentropic flows of ideal gases.

• Derive the relationships between the static and stagnation

fluid properties as functions of specific-heat ratios and

Mach number.

• Derive the effects of area changes for one-dimensional

isentropic subsonic and supersonic flows.

• Solve problems of isentropic flow through converging and

converging–diverging nozzles.

• Discuss the shock wave and the variation of flow properties

across the shock wave.

• Develop the concept of duct flow with heat transfer and

negligible friction known as Rayleigh flow.

• Examine the operation of steam nozzles commonly used in

steam turbines.



17–1 ■ STAGNATION PROPERTIES

When analyzing control volumes, we find it very convenient to combine the

internal energy and the flow energy of a fluid into a single term, enthalpy,

defined per unit mass as h � u � Pv. Whenever the kinetic and potential

energies of the fluid are negligible, as is often the case, the enthalpy repre-

sents the total energy of a fluid. For high-speed flows, such as those

encountered in jet engines (Fig. 17–1), the potential energy of the fluid is

still negligible, but the kinetic energy is not. In such cases, it is convenient

to combine the enthalpy and the kinetic energy of the fluid into a single

term called stagnation (or total) enthalpy h0, defined per unit mass as

(17–1)

When the potential energy of the fluid is negligible, the stagnation enthalpy

represents the total energy of a flowing fluid stream per unit mass. Thus it

simplifies the thermodynamic analysis of high-speed flows.

Throughout this chapter the ordinary enthalpy h is referred to as the static

enthalpy, whenever necessary, to distinguish it from the stagnation

enthalpy. Notice that the stagnation enthalpy is a combination property of a

fluid, just like the static enthalpy, and these two enthalpies become identical

when the kinetic energy of the fluid is negligible.

Consider the steady flow of a fluid through a duct such as a nozzle, dif-

fuser, or some other flow passage where the flow takes place adiabatically

and with no shaft or electrical work, as shown in Fig. 17–2. Assuming the

fluid experiences little or no change in its elevation and its potential energy,

the energy balance relation (E
.
in � E

.
out) for this single-stream steady-flow

system reduces to

(17–2)

or

(17–3)

That is, in the absence of any heat and work interactions and any changes in

potential energy, the stagnation enthalpy of a fluid remains constant during

a steady-flow process. Flows through nozzles and diffusers usually satisfy

these conditions, and any increase in fluid velocity in these devices creates

an equivalent decrease in the static enthalpy of the fluid.

If the fluid were brought to a complete stop, then the velocity at state 2

would be zero and Eq. 17–2 would become

Thus the stagnation enthalpy represents the enthalpy of a fluid when it is

brought to rest adiabatically.

During a stagnation process, the kinetic energy of a fluid is converted to

enthalpy (internal energy � flow energy), which results in an increase in the

fluid temperature and pressure (Fig. 17–3). The properties of a fluid at the

stagnation state are called stagnation properties (stagnation temperature,
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FIGURE 17–1

Aircraft and jet engines involve high

speeds, and thus the kinetic energy

term should always be considered

when analyzing them.

(a) Photo courtesy of NASA,

http://lisar.larc.nasa.gov/IMAGES/SMALL/EL-

1999-00108.jpeg, and (b) Figure courtesy of Pratt

and Whitney. Used by permission.
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FIGURE 17–2

Steady flow of a fluid through an

adiabatic duct.



stagnation pressure, stagnation density, etc.). The stagnation state and the

stagnation properties are indicated by the subscript 0.

The stagnation state is called the isentropic stagnation state when the

stagnation process is reversible as well as adiabatic (i.e., isentropic). The

entropy of a fluid remains constant during an isentropic stagnation process.

The actual (irreversible) and isentropic stagnation processes are shown on

the h-s diagram in Fig. 17–4. Notice that the stagnation enthalpy of the fluid

(and the stagnation temperature if the fluid is an ideal gas) is the same for

both cases. However, the actual stagnation pressure is lower than the isen-

tropic stagnation pressure since entropy increases during the actual stagna-

tion process as a result of fluid friction. The stagnation processes are often

approximated to be isentropic, and the isentropic stagnation properties are

simply referred to as stagnation properties.

When the fluid is approximated as an ideal gas with constant specific

heats, its enthalpy can be replaced by cpT and Eq. 17–1 can be expressed as

or

(17–4)

Here T0 is called the stagnation (or total) temperature, and it represents

the temperature an ideal gas attains when it is brought to rest adiabatically.

The term V 2/2cp corresponds to the temperature rise during such a process

and is called the dynamic temperature. For example, the dynamic temper-

ature of air flowing at 100 m/s is (100 m/s)2/(2 � 1.005 kJ/kg · K) � 5.0 K.

Therefore, when air at 300 K and 100 m/s is brought to rest adiabatically (at

the tip of a temperature probe, for example), its temperature rises to the

stagnation value of 305 K (Fig. 17–5). Note that for low-speed flows, the

stagnation and static (or ordinary) temperatures are practically the same.

But for high-speed flows, the temperature measured by a stationary probe

placed in the fluid (the stagnation temperature) may be significantly higher

than the static temperature of the fluid.

The pressure a fluid attains when brought to rest isentropically is called

the stagnation pressure P0. For ideal gases with constant specific heats, P0

is related to the static pressure of the fluid by

(17–5)

By noting that r � 1/v and using the isentropic relation , the

ratio of the stagnation density to static density can be expressed as

(17–6)

When stagnation enthalpies are used, there is no need to refer explicitly to

kinetic energy. Then the energy balance for a single-stream,

steady-flow device can be expressed as

(17–7)qin � win � 1h01 � gz1 2 � qout � wout � 1h02 � gz2 2
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FIGURE 17–3

Kinetic energy is converted to

enthalpy during a stagnation process.

© Reprinted with special permission of King

Features Syndicate.
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of a fluid on an h-s diagram.



where h01 and h02 are the stagnation enthalpies at states 1 and 2, respectively.

When the fluid is an ideal gas with constant specific heats, Eq. 17–7 becomes

(17–8)

where T01 and T02 are the stagnation temperatures.

Notice that kinetic energy terms do not explicitly appear in Eqs. 17–7 and

17–8, but the stagnation enthalpy terms account for their contribution.

1qin � qout 2 � 1win � wout 2 � cp 1T02 � T01 2 � g 1z2 � z1 2
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FIGURE 17–5

The temperature of an ideal gas

flowing at a velocity V rises by V2/2cp

when it is brought to a complete stop.
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T1 = 255.7 K

V1 = 250 m/s

P1 = 54.05 kPa

Diffuser

1 01 02
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FIGURE 17–6

Schematic for Example 17–1.

EXAMPLE 17–1 Compression of High-Speed Air in an Aircraft

An aircraft is flying at a cruising speed of 250 m/s at an altitude of 5000 m

where the atmospheric pressure is 54.05 kPa and the ambient air tempera-

ture is 255.7 K. The ambient air is first decelerated in a diffuser before it

enters the compressor (Fig. 17–6). Assuming both the diffuser and the com-

pressor to be isentropic, determine (a) the stagnation pressure at the com-

pressor inlet and (b) the required compressor work per unit mass if the

stagnation pressure ratio of the compressor is 8.

Solution High-speed air enters the diffuser and the compressor of an air-

craft. The stagnation pressure of air and the compressor work input are to be

determined.

Assumptions 1 Both the diffuser and the compressor are isentropic. 2 Air is

an ideal gas with constant specific heats at room temperature.

Properties The constant-pressure specific heat cp and the specific heat ratio

k of air at room temperature are (Table A–2a)

Analysis (a) Under isentropic conditions, the stagnation pressure at the

compressor inlet (diffuser exit) can be determined from Eq. 17–5. However,

first we need to find the stagnation temperature T01 at the compressor inlet.

Under the stated assumptions, T01 can be determined from Eq. 17–4 to be

Then from Eq. 17–5,

That is, the temperature of air would increase by 31.1°C and the pressure by

26.72 kPa as air is decelerated from 250 m/s to zero velocity. These

increases in the temperature and pressure of air are due to the conversion of

the kinetic energy into enthalpy.

(b) To determine the compressor work, we need to know the stagnation tem-

perature of air at the compressor exit T02. The stagnation pressure ratio

across the compressor P02/P01 is specified to be 8. Since the compression

process is assumed to be isentropic, T02 can be determined from the ideal-

gas isentropic relation (Eq. 17–5):

T02 � T01 a P02

P01

b 1k�12>k
� 1286.8 K 2 18 2 11.4�12>1.4

� 519.5 K

 � 80.77 kPa

 P01 � P1 a T01

T1

b k>1k�12
� 154.05 kPa 2 a 286.8 K

255.7 K
b 1.4>11.4�12

 � 286.8 K

 T01 � T1 �
V 2

1

2cp

� 255.7 K �

1250 m>s 2 2
12 2 11.005 kJ>kg # K 2 a

1 kJ>kg

1000 m2>s2
b

cp � 1.005 kJ>kg # KÉandÉk � 1.4



17–2 ■ SPEED OF SOUND AND MACH NUMBER

An important parameter in the study of compressible flow is the speed of

sound (or the sonic speed), which is the speed at which an infinitesimally

small pressure wave travels through a medium. The pressure wave may be

caused by a small disturbance, which creates a slight rise in local pressure.

To obtain a relation for the speed of sound in a medium, consider a pipe

that is filled with a fluid at rest, as shown in Fig. 17–7. A piston fitted in the

pipe is now moved to the right with a constant incremental velocity dV, cre-

ating a sonic wave. The wave front moves to the right through the fluid at

the speed of sound c and separates the moving fluid adjacent to the piston

from the fluid still at rest. The fluid to the left of the wave front experiences

an incremental change in its thermodynamic properties, while the fluid on

the right of the wave front maintains its original thermodynamic properties,

as shown in Fig. 17–7.

To simplify the analysis, consider a control volume that encloses the wave

front and moves with it, as shown in Fig. 17–8. To an observer traveling

with the wave front, the fluid to the right will appear to be moving toward

the wave front with a speed of c and the fluid to the left to be moving away

from the wave front with a speed of c � dV. Of course, the observer will

think the control volume that encloses the wave front (and herself or him-

self) is stationary, and the observer will be witnessing a steady-flow process.

The mass balance for this single-stream, steady-flow process can be

expressed as

or

By canceling the cross-sectional (or flow) area A and neglecting the higher-

order terms, this equation reduces to

(a)

No heat or work crosses the boundaries of the control volume during this

steady-flow process, and the potential energy change, if any, can be

neglected. Then the steady-flow energy balance ein � eout becomes

h �
c2

2
� h � dh �

1c � dV 2 2
2

c dr � r dV � 0

rAc � 1r � dr 2A 1c � dV 2

m
#

right � m
#

left
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Disregarding potential energy changes and heat transfer, the compressor

work per unit mass of air is determined from Eq. 17–8:

Thus the work supplied to the compressor is 233.9 kJ/kg.

Discussion Notice that using stagnation properties automatically accounts

for any changes in the kinetic energy of a fluid stream.

 � 233.9 kJ/kg 

 � 11.005 kJ>kg # K 2 1519.5 K � 286.8 K 2
 win � cp 1T02 � T01 2
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Propagation of a small pressure wave

along a duct.
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which yields

(b)

where we have neglected the second-order term dV 2. The amplitude of the

ordinary sonic wave is very small and does not cause any appreciable

change in the pressure and temperature of the fluid. Therefore, the propaga-

tion of a sonic wave is not only adiabatic but also very nearly isentropic.

Then the second T ds relation developed in Chapter 7 reduces to

or

(c)

Combining Eqs. a, b, and c yields the desired expression for the speed of

sound as

or

(17–9)

It is left as an exercise for the reader to show, by using thermodynamic

property relations (see Chap. 12) that Eq. 17–9 can also be written as

(17–10)

where k is the specific heat ratio of the fluid. Note that the speed of sound

in a fluid is a function of the thermodynamic properties of that fluid.

When the fluid is an ideal gas (P � rRT ), the differentiation in Eq. 17–10

can easily be performed to yield

or

(17–11)

Noting that the gas constant R has a fixed value for a specified ideal gas and

the specific heat ratio k of an ideal gas is, at most, a function of tempera-

ture, we see that the speed of sound in a specified ideal gas is a function of

temperature alone (Fig. 17–9).

A second important parameter in the analysis of compressible fluid flow

is the Mach number Ma, named after the Austrian physicist Ernst Mach

(1838–1916). It is the ratio of the actual velocity of the fluid (or an object in

still air) to the speed of sound in the same fluid at the same state:

(17–12)

Note that the Mach number depends on the speed of sound, which depends

on the state of the fluid. Therefore, the Mach number of an aircraft cruising

Ma �
V

c

c � 2kRT

c2
� k a 0P

0r
b

T

� k c 0 1rRT 2
0r

d
T

� kRT

c2
� k a 0P

0r
b

T

c2
� a 0P

0r
b

s

c2
�

dP

dr
ÉÉat s � constant

dh �
dP

r

T ds  � dh �
dP

r

dh � c dV � 0
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at constant velocity in still air may be different at different locations

(Fig. 17–10).

Fluid flow regimes are often described in terms of the flow Mach number.

The flow is called sonic when Ma � 1, subsonic when Ma � 1, supersonic

when Ma � 1, hypersonic when Ma �� 1, and transonic when Ma � 1.
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FIGURE 17–10

The Mach number can be different at

different temperatures even if the

velocity is the same.
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Schematic for Example 17–2.
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Schematic for Example 17–3.

EXAMPLE 17–2 Mach Number of Air Entering a Diffuser

Air enters a diffuser shown in Fig. 17–11 with a velocity of 200 m/s. Deter-

mine (a) the speed of sound and (b) the Mach number at the diffuser inlet

when the air temperature is 30°C.

Solution Air enters a diffuser with a high velocity. The speed of sound and

the Mach number are to be determined at the diffuser inlet.

Assumptions Air at specified conditions behaves as an ideal gas.

Properties The gas constant of air is R � 0.287 kJ/kg · K, and its specific

heat ratio at 30°C is 1.4 (Table A–2a).

Analysis We note that the speed of sound in a gas varies with temperature,

which is given to be 30°C.

(a) The speed of sound in air at 30°C is determined from Eq. 17–11 to be

(b) Then the Mach number becomes

Discussion The flow at the diffuser inlet is subsonic since Ma � 1.

Ma �
V

c
�

200 m>s
349 m>s � 0.573

c � 2kRT � B 11.4 2 10.287 kJ>kg # K 2 1303 K 2 a 1000 m2>s2

1 kJ>kg
b � 349 m/s

17–3 ■ ONE-DIMENSIONAL ISENTROPIC FLOW

During fluid flow through many devices such as nozzles, diffusers, and tur-

bine blade passages, flow quantities vary primarily in the flow direction

only, and the flow can be approximated as one-dimensional isentropic flow

with good accuracy. Therefore, it merits special consideration. Before pre-

senting a formal discussion of one-dimensional isentropic flow, we illustrate

some important aspects of it with an example.

EXAMPLE 17–3 Gas Flow through a Converging–Diverging Duct

Carbon dioxide flows steadily through a varying cross-sectional-area duct

such as a nozzle shown in Fig. 17–12 at a mass flow rate of 3 kg/s. The car-

bon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low

velocity, and it expands in the nozzle to a pressure of 200 kPa. The duct is

designed so that the flow can be approximated as isentropic. Determine the

density, velocity, flow area, and Mach number at each location along the

duct that corresponds to a pressure drop of 200 kPa.

Solution Carbon dioxide enters a varying cross-sectional-area duct at speci-

fied conditions. The flow properties are to be determined along the duct.
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Assumptions 1 Carbon dioxide is an ideal gas with constant specific heats

at room temperature. 2 Flow through the duct is steady, one-dimensional,

and isentropic.

Properties For simplicity we use cp � 0.846 kJ/kg · K and k � 1.289

throughout the calculations, which are the constant-pressure specific heat

and specific heat ratio values of carbon dioxide at room temperature. The

gas constant of carbon dioxide is R � 0.1889 kJ/kg � K (Table A–2a).

Analysis We note that the inlet temperature is nearly equal to the stagna-

tion temperature since the inlet velocity is small. The flow is isentropic, and

thus the stagnation temperature and pressure throughout the duct remain

constant. Therefore,

and

To illustrate the solution procedure, we calculate the desired properties at

the location where the pressure is 1200 kPa, the first location that corre-

sponds to a pressure drop of 200 kPa.

From Eq. 17–5,

From Eq. 17–4,

From the ideal-gas relation,

From the mass flow rate relation,

From Eqs. 17–11 and 17–12,

The results for the other pressure steps are summarized in Table 17–1 and

are plotted in Fig. 17–13.

Discussion Note that as the pressure decreases, the temperature and speed

of sound decrease while the fluid velocity and Mach number increase in the

flow direction. The density decreases slowly at first and rapidly later as the

fluid velocity increases.

 Ma �
V

c
�

164.5 m>s
333.6 m>s � 0.493 

 c � 2kRT � B 11.289 2 10.1889 kJ>kg # K 2 1457 K 2 a1000 m2>s2

1 kJ>kg
b � 333.6 m>s

A �
m
#

rV
�

3 kg>s
113.9 kg>m3 2 1164.5 m>s 2 � 13.1 � 10�4 m2

� 13.1 cm2

r �
P

RT
�

1200 kPa

10.1889 kPa # m3>kg # K 2 1457 K 2 � 13.9 kg/m3

 � 164.5 m/s

 � B2 10.846 kJ>kg # K 2 1473 K � 457 K 2 a 1000 m2>s3

1 kJ>kg
b

 V � 22cp 1T0 � T 2

T � T0 a P

P0

b 1k�12>k
� 1473 K 2 a 1200 kPa

1400 kPa
b 11.289�12>1.289

� 457 K

P0 � P1 � 1400 kPa

T0 � T1 � 200°C � 473 K



We note from Example 17–3 that the flow area decreases with decreasing

pressure up to a critical-pressure value where the Mach number is unity, and

then it begins to increase with further reductions in pressure. The Mach

number is unity at the location of smallest flow area, called the throat (Fig.

17–14). Note that the velocity of the fluid keeps increasing after passing the

throat although the flow area increases rapidly in that region. This increase

in velocity past the throat is due to the rapid decrease in the fluid density.

The flow area of the duct considered in this example first decreases and

then increases. Such ducts are called converging–diverging nozzles. These

nozzles are used to accelerate gases to supersonic speeds and should not be

confused with Venturi nozzles, which are used strictly for incompressible

flow. The first use of such a nozzle occurred in 1893 in a steam turbine
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TABLE 17–1

Variation of fluid properties in flow direction in duct described in

Example 17–3 for m
.

� 3 kg/s � constant

P, kPa T, K V, m/s r, kg/m3 c, m/s A, cm2 Ma

1400 473 0 15.7 339.4 ∞ 0

1200 457 164.5 13.9 333.6 13.1 0.493

1000 439 240.7 12.1 326.9 10.3 0.736

800 417 306.6 10.1 318.8 9.64 0.962

767* 413 317.2 9.82 317.2 9.63 1.000

600 391 371.4 8.12 308.7 10.0 1.203

400 357 441.9 5.93 295.0 11.5 1.498

200 306 530.9 3.46 272.9 16.3 1.946

* 767 kPa is the critical pressure where the local Mach number is unity.

Flow direction
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 r
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, 
V

12001400
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V

FIGURE 17–13

Variation of normalized fluid

properties and cross-sectional area

along a duct as the pressure drops

from 1400 to 200 kPa.



designed by a Swedish engineer, Carl G. B. de Laval (1845–1913), and

therefore converging–diverging nozzles are often called Laval nozzles.

Variation of Fluid Velocity with Flow Area
It is clear from Example 17–3 that the couplings among the velocity, den-

sity, and flow areas for isentropic duct flow are rather complex. In the

remainder of this section we investigate these couplings more thoroughly,

and we develop relations for the variation of static-to-stagnation property

ratios with the Mach number for pressure, temperature, and density.

We begin our investigation by seeking relationships among the pressure,

temperature, density, velocity, flow area, and Mach number for one-

dimensional isentropic flow. Consider the mass balance for a steady-flow

process:

Differentiating and dividing the resultant equation by the mass flow rate, we

obtain

(17–13)

Neglecting the potential energy, the energy balance for an isentropic flow with

no work interactions can be expressed in the differential form as (Fig. 17–15)

(17–14)

This relation is also the differential form of Bernoulli’s equation when

changes in potential energy are negligible, which is a form of the conserva-

tion of momentum principle for steady-flow control volumes. Combining

Eqs. 17–13 and 17–14 gives

(17–15)

Rearranging Eq. 17–9 as (∂r/∂P)s � 1/c2 and substituting into Eq. 17–15 yield

(17–16)

This is an important relation for isentropic flow in ducts since it describes

the variation of pressure with flow area. We note that A, r, and V are positive

quantities. For subsonic flow (Ma � 1), the term 1 � Ma2 is positive; and

thus dA and dP must have the same sign. That is, the pressure of the fluid

must increase as the flow area of the duct increases and must decrease as the

flow area of the duct decreases. Thus, at subsonic velocities, the pressure

decreases in converging ducts (subsonic nozzles) and increases in diverging

ducts (subsonic diffusers).

In supersonic flow (Ma � 1), the term 1 � Ma2 is negative, and thus dA

and dP must have opposite signs. That is, the pressure of the fluid must

dA

A
�

dP

rV 2
 11 � Ma2 2

dA

A
�

dP

r
a 1

V 2
�

dr

dP
b

dP

r
� V dV � 0

dr

r
�

dA

A
�

dV

V
� 0

m
#

� rAV � constant
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The cross section of a nozzle at the

smallest flow area is called the throat.
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1
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2

2
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h
 
+

V 2

2
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Differentiate,

dh + V  dV  = 0

Also,

= dh –  dP

dh  =  dP v r

r

v

=
1

Substitute,
dP + V  dV  = 0

T ds 

FIGURE 17–15

Derivation of the differential form of

the energy equation for steady

isentropic flow.



increase as the flow area of the duct decreases and must decrease as the

flow area of the duct increases. Thus, at supersonic velocities, the pressure

decreases in diverging ducts (supersonic nozzles) and increases in converg-

ing ducts (supersonic diffusers).

Another important relation for the isentropic flow of a fluid is obtained by

substituting rV � �dP/dV from Eq. 17–14 into Eq. 17–16:

(17–17)

This equation governs the shape of a nozzle or a diffuser in subsonic or

supersonic isentropic flow. Noting that A and V are positive quantities, we

conclude the following:

Thus the proper shape of a nozzle depends on the highest velocity desired

relative to the sonic velocity. To accelerate a fluid, we must use a converg-

ing nozzle at subsonic velocities and a diverging nozzle at supersonic veloc-

ities. The velocities encountered in most familiar applications are well

below the sonic velocity, and thus it is natural that we visualize a nozzle as

a converging duct. However, the highest velocity we can achieve by a con-

verging nozzle is the sonic velocity, which occurs at the exit of the nozzle.

If we extend the converging nozzle by further decreasing the flow area, in

hopes of accelerating the fluid to supersonic velocities, as shown in

Fig. 17–16, we are up for disappointment. Now the sonic velocity will occur

at the exit of the converging extension, instead of the exit of the original

nozzle, and the mass flow rate through the nozzle will decrease because of

the reduced exit area.

Based on Eq. 17–16, which is an expression of the conservation of mass

and energy principles, we must add a diverging section to a converging noz-

zle to accelerate a fluid to supersonic velocities. The result is a converging–

diverging nozzle. The fluid first passes through a subsonic (converging) sec-

tion, where the Mach number increases as the flow area of the nozzle

decreases, and then reaches the value of unity at the nozzle throat. The fluid

continues to accelerate as it passes through a supersonic (diverging) section.

Noting that m
.

� rAV for steady flow, we see that the large decrease in den-

sity makes acceleration in the diverging section possible. An example of this

type of flow is the flow of hot combustion gases through a nozzle in a gas

turbine.

The opposite process occurs in the engine inlet of a supersonic aircraft.

The fluid is decelerated by passing it first through a supersonic diffuser,

which has a flow area that decreases in the flow direction. Ideally, the flow

reaches a Mach number of unity at the diffuser throat. The fluid is further

 For sonic flow 1Ma � 1 2 ,  
dA

dV
� 0

 For supersonic flow 1Ma 7 1 2 ,  
dA

dV
7 0

 For subsonic flow 1Ma 6 1 2 ,  
dA

dV
6 0

dA

A
� �

dV

V
11 � Ma2 2
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FIGURE 17–16

We cannot obtain supersonic velocities

by attaching a converging section to a

converging nozzle. Doing so will only

move the sonic cross section farther

downstream and decrease the mass

flow rate.



decelerated in a subsonic diffuser, which has a flow area that increases in

the flow direction, as shown in Fig. 17–17.

Property Relations for Isentropic Flow 
of Ideal Gases
Next we develop relations between the static properties and stagnation proper-

ties of an ideal gas in terms of the specific heat ratio k and the Mach number

Ma. We assume the flow is isentropic and the gas has constant specific heats.

The temperature T of an ideal gas anywhere in the flow is related to the

stagnation temperature T0 through Eq. 17–4:

or

Noting that cp � kR/(k � 1), c2 � kRT, and Ma � V/c, we see that

Substituting yields

(17–18)

which is the desired relation between T0 and T.

T0

T
� 1 � a k � 1

2
bMa2

V2

2cpT
�

V2

2 3kR> 1k � 1 2 4T � a k � 1

2
b V 2

c2
� a k � 1

2
bMa2

T0

T
� 1 �

V 2

2cpT

T0 � T �
V 2

2cp
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Subsonic nozzle

(a) Subsonic flow

Ma < 1

Supersonic diffuser

Ma > 1

Supersonic nozzle

Ma > 1

Subsonic diffuser

Ma < 1

(b) Supersonic flow

P decreases

V increases
Ma increases

T decreases
r decreases

P decreases

V increases
Ma increases

T decreases
r decreases

P increases

V decreases
Ma decreases

T increases
r increases

P increases

V decreases
Ma decreases

T increases
r increasesFIGURE 17–17

Variation of flow properties in

subsonic and supersonic nozzles and

diffusers.



The ratio of the stagnation to static pressure is obtained by substituting

Eq. 17–18 into Eq. 17–5:

(17–19)

The ratio of the stagnation to static density is obtained by substituting

Eq. 17–18 into Eq. 17–6:

(17–20)

Numerical values of T/T0, P/P0, and r/r0 are listed versus the Mach number

in Table A–32 for k � 1.4, which are very useful for practical compressible

flow calculations involving air.

The properties of a fluid at a location where the Mach number is unity (the

throat) are called critical properties, and the ratios in Eqs. (17–18) through

(17–20) are called critical ratios (Fig. 17–18). It is common practice in the

analysis of compressible flow to let the superscript asterisk (*) represent the

critical values. Setting Ma � 1 in Eqs. 17–18 through 17–20 yields

(17–21)

(17–22)

(17–23)

These ratios are evaluated for various values of k and are listed in Table

17–2. The critical properties of compressible flow should not be confused

with the properties of substances at the critical point (such as the critical

temperature Tc and critical pressure Pc).

r*

r0

� a 2

k � 1
b 1>1k�12

P*

P0

� a 2

k � 1
b k>1k�12

T*

T0

�
2

k � 1

r0

r
� c1 � a k � 1

2
bMa2 d 1>1k�12

P0

P
� c1 � a k � 1

2
bMa2 d k>1k�12
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When Mat � 1, the properties at the

nozzle throat become the critical

properties.

TABLE 17–2

The critical-pressure, critical-temperature, and critical-density ratios for

isentropic flow of some ideal gases

Superheated Hot products Monatomic

steam, of combustion, Air, gases,

k � 1.3 k � 1.33 k � 1.4 k � 1.667

0.5457 0.5404 0.5283 0.4871

0.8696 0.8584 0.8333 0.7499

0.6276 0.6295 0.6340 0.6495
r*

r0

T*

T0

P*

P0



17–4 ■ ISENTROPIC FLOW THROUGH NOZZLES

Converging or converging–diverging nozzles are found in many engineering

applications including steam and gas turbines, aircraft and spacecraft

propulsion systems, and even industrial blasting nozzles and torch nozzles.

In this section we consider the effects of back pressure (i.e., the pressure

applied at the nozzle discharge region) on the exit velocity, the mass flow

rate, and the pressure distribution along the nozzle.

Converging Nozzles
Consider the subsonic flow through a converging nozzle as shown in

Fig. 17–20. The nozzle inlet is attached to a reservoir at pressure Pr and

temperature Tr. The reservoir is sufficiently large so that the nozzle inlet

velocity is negligible. Since the fluid velocity in the reservoir is zero and

the flow through the nozzle is approximated as isentropic, the stagnation

pressure and stagnation temperature of the fluid at any cross section

through the nozzle are equal to the reservoir pressure and temperature,

respectively.
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EXAMPLE 17–4 Critical Temperature and Pressure in Gas Flow

Calculate the critical pressure and temperature of carbon dioxide for the flow

conditions described in Example 17–3 (Fig. 17–19).

Solution For the flow discussed in Example 17–3, the critical pressure and

temperature are to be calculated.

Assumptions 1 The flow is steady, adiabatic, and one-dimensional. 2 Carbon

dioxide is an ideal gas with constant specific heats.

Properties The specific heat ratio of carbon dioxide at room temperature is

k � 1.289 (Table A–2a).

Analysis The ratios of critical to stagnation temperature and pressure are

determined to be

Noting that the stagnation temperature and pressure are, from Example

17–3, T0 � 473 K and P0 � 1400 kPa, we see that the critical temperature

and pressure in this case are

Discussion Note that these values agree with those listed in Table 17–1, as

expected. Also, property values other than these at the throat would indicate

that the flow is not critical, and the Mach number is not unity.

 P* � 0.5477P0 � 10.5477 2 11400 kPa 2 � 767 kPa

 T* � 0.8737T0 � 10.8737 2 1473 K 2 � 413 K

 
P*

P0

� a 2

k � 1
b k>1k�12

� a 2

1.289 � 1
b 1.289>11.289�12

� 0.5477

 
T*

T0

�
2

k � 1
�

2

1.289 � 1
� 0.8737 

T *
P *

= 473 K

= 1.4 MPa
CO2T

0 

P
0 

FIGURE 17–19

Schematic for Example 17–4.
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The effect of back pressure on the

pressure distribution along a

converging nozzle.



Now we begin to reduce the back pressure and observe the resulting

effects on the pressure distribution along the length of the nozzle, as shown

in Fig. 17–20. If the back pressure Pb is equal to P1, which is equal to Pr,

there is no flow and the pressure distribution is uniform along the nozzle.

When the back pressure is reduced to P2, the exit plane pressure Pe also

drops to P2. This causes the pressure along the nozzle to decrease in the

flow direction.

When the back pressure is reduced to P3 (� P*, which is the pressure

required to increase the fluid velocity to the speed of sound at the exit plane

or throat), the mass flow reaches a maximum value and the flow is said to

be choked. Further reduction of the back pressure to level P4 or below does

not result in additional changes in the pressure distribution, or anything else

along the nozzle length.

Under steady-flow conditions, the mass flow rate through the nozzle is

constant and can be expressed as

Solving for T from Eq. 17–18 and for P from Eq. 17–19 and substituting,

(17–24)

Thus the mass flow rate of a particular fluid through a nozzle is a function

of the stagnation properties of the fluid, the flow area, and the Mach num-

ber. Equation 17–24 is valid at any cross section, and thus m
.

can be evalu-

ated at any location along the length of the nozzle.

For a specified flow area A and stagnation properties T0 and P0, the maxi-

mum mass flow rate can be determined by differentiating Eq. 17–24 with

respect to Ma and setting the result equal to zero. It yields Ma � 1. Since

the only location in a nozzle where the Mach number can be unity is the

location of minimum flow area (the throat), the mass flow rate through a

nozzle is a maximum when Ma � 1 at the throat. Denoting this area by A*,

we obtain an expression for the maximum mass flow rate by substituting

Ma � 1 in Eq. 17–24:

(17–25)

Thus, for a particular ideal gas, the maximum mass flow rate through a

nozzle with a given throat area is fixed by the stagnation pressure and tem-

perature of the inlet flow. The flow rate can be controlled by changing

the stagnation pressure or temperature, and thus a converging nozzle can be

used as a flowmeter. The flow rate can also be controlled, of course, by

varying the throat area. This principle is vitally important for chemical

processes, medical devices, flowmeters, and anywhere the mass flux of a

gas must be known and controlled.

A plot of m
.

versus Pb/P0 for a converging nozzle is shown in Fig. 17–21.

Notice that the mass flow rate increases with decreasing Pb /P0, reaches a

maximum at Pb � P*, and remains constant for Pb /P0 values less than this

m
#

max � A*P0B
k

RT0

a 2

k � 1
b 1k�12> 321k�124

m
#

�

AMaP02k> 1RT0 2
31 � 1k � 1 2Ma2>2 4 1k�12> 321k�124

m
#

� rAV � a P

RT
bA 1Ma2kRT 2 � PAMaB

k

RT
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critical ratio. Also illustrated on this figure is the effect of back pressure on

the nozzle exit pressure Pe. We observe that

To summarize, for all back pressures lower than the critical pressure P*,

the pressure at the exit plane of the converging nozzle Pe is equal to P*, the

Mach number at the exit plane is unity, and the mass flow rate is the maxi-

mum (or choked) flow rate. Because the velocity of the flow is sonic at the

throat for the maximum flow rate, a back pressure lower than the critical

pressure cannot be sensed in the nozzle upstream flow and does not affect

the flow rate.

The effects of the stagnation temperature T0 and stagnation pressure P0 on

the mass flow rate through a converging nozzle are illustrated in Fig. 17–22

where the mass flow rate is plotted against the static-to-stagnation pressure

ratio at the throat Pt /P0. An increase in P0 (or a decrease in T0) will increase

the mass flow rate through the converging nozzle; a decrease in P0 (or an

increase in T0) will decrease it. We could also conclude this by carefully

observing Eqs. 17–24 and 17–25.

A relation for the variation of flow area A through the nozzle relative to

throat area A* can be obtained by combining Eqs. 17–24 and 17–25 for the

same mass flow rate and stagnation properties of a particular fluid. This

yields

(17–26)

Table A–32 gives values of A/A* as a function of the Mach number for air

(k � 1.4). There is one value of A/A* for each value of the Mach number,

but there are two possible values of the Mach number for each value of

A/A*—one for subsonic flow and another for supersonic flow.

A

A*
�

1

Ma
c a 2

k � 1
b a1 �

k � 1

2
 Ma2 b d 1k�12> 321k�124

Pe � ePb   for Pb � P*

P*   for Pb 6 P*
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Another parameter sometimes used in the analysis of one-dimensional

isentropic flow of ideal gases is Ma*, which is the ratio of the local velocity

to the speed of sound at the throat:

(17–27)

It can also be expressed as

where Ma is the local Mach number, T is the local temperature, and T* is

the critical temperature. Solving for T from Eq. 17–18 and for T* from

Eq. 17–21 and substituting, we get

(17–28)

Values of Ma* are also listed in Table A–32 versus the Mach number for

k � 1.4 (Fig. 17–23). Note that the parameter Ma* differs from the Mach

number Ma in that Ma* is the local velocity nondimensionalized with

respect to the sonic velocity at the throat, whereas Ma is the local velocity

nondimensionalized with respect to the local sonic velocity. (Recall that the

sonic velocity in a nozzle varies with temperature and thus with location.)

Ma* � MaB
k � 1

2 � 1k � 1 2Ma2

Ma* �
V

c
 

c

c*
�

Mac

c*
�

Ma2kRT

2kRT*
� MaB

T

T*

Ma* �
V

c*
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Various property ratios for isentropic

flow through nozzles and diffusers are

listed in Table A–32 for k � 1.4 for

convenience.
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FIGURE 17–24

Schematic for Example 17–5.

EXAMPLE 17–5 Effect of Back Pressure on Mass Flow Rate

Air at 1 MPa and 600°C enters a converging nozzle, shown in Fig. 17–24,

with a velocity of 150 m/s. Determine the mass flow rate through the nozzle

for a nozzle throat area of 50 cm2 when the back pressure is (a) 0.7 MPa

and (b) 0.4 MPa.

Solution Air enters a converging nozzle. The mass flow rate of air through

the nozzle is to be determined for different back pressures.

Assumptions 1 Air is an ideal gas with constant specific heats at room

temperature. 2 Flow through the nozzle is steady, one-dimensional, and

isentropic.

Properties The constant-pressure specific heat and the specific heat ratio of

air are cp � 1.005 kJ/kg � K and k � 1.4, respectively (Table A–2a). 

Analysis We use the subscripts i and t to represent the properties at the

nozzle inlet and the throat, respectively. The stagnation temperature and

pressure at the nozzle inlet are determined from Eqs. 17–4 and 17–5:

These stagnation temperature and pressure values remain constant through-

out the nozzle since the flow is assumed to be isentropic. That is,

T0 � T0i � 884 KÉandÉP0 � P0i � 1.045 MPa

 P0i � Pi a T0i

Ti

b k>1k�12
� 11 MPa 2 a 884 K

873 K
b 1.4>11.4�12

� 1.045 MPa

 T0i � Ti �
V 2

i

2cp

� 873 K �

1150 m>s 2 2
2 11.005 kJ>kg # K 2  a

1 kJ>kg

1000 m2>s2
b � 884 K
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The critical-pressure ratio is determined from Table 17–2 (or Eq. 17–22) to

be P*/P0 � 0.5283.

(a) The back pressure ratio for this case is

which is greater than the critical-pressure ratio, 0.5283. Thus the exit plane

pressure (or throat pressure Pt) is equal to the back pressure in this case. That

is, Pt � Pb � 0.7 MPa, and Pt /P0 � 0.670. Therefore, the flow is not choked.

From Table A–32 at Pt /P0 � 0.670, we read Mat � 0.778 and Tt /T0 � 0.892.

The mass flow rate through the nozzle can be calculated from Eq. 17–24.

But it can also be determined in a step-by-step manner as follows:

Thus,

(b) The back pressure ratio for this case is

which is less than the critical-pressure ratio, 0.5283. Therefore, sonic condi-

tions exist at the exit plane (throat) of the nozzle, and Ma � 1. The flow is

choked in this case, and the mass flow rate through the nozzle can be calcu-

lated from Eq. 17–25:

since .

Discussion This is the maximum mass flow rate through the nozzle for the

specified inlet conditions and nozzle throat area.

kPa # m2>2kJ>kg � 21000 kg>s
 � 7.10 kg/s

 � 150 � 10�4 m2 2 11045 kPa 2� B
1.4

10.287 kJ>kg # K 2 1884 K 2  a
2

1.4 � 1
b 2.4>0.8

 m
#

� A*P0B
k

RT0

a 2

k � 1
b 1k�12>321k�124

 

Pb

P0

�
0.4 MPa

1.045 MPa
� 0.383

m
#

� rt AtVt � 13.093 kg>m3 2 150 � 10�4 m2 2 1437.9 m>s 2 � 6.77 kg/s

 � 437.9 m>s
 � 10.778 2B 11.4 2 10.287 kJ>kg # K 2 1788.5 K 2 a 1000 m2>s2

1 kJ>kg
b

 Vt � Mat ct � Mat2kRTt

 rt �
Pt

RTt

�
700 kPa

10.287 kPa # m3>kg # K 2 1788.5 K 2 � 3.093 kg>m3

 Tt � 0.892T0 � 0.892 1884 K 2 � 788.5 K

Pb

P0

�
0.7 MPa

1.045 MPa
� 0.670

EXAMPLE 17–6 Gas Flow through a Converging Nozzle

Nitrogen enters a duct with varying flow area at T1 � 400 K, P1 � 100 kPa,

and Ma1 � 0.3. Assuming steady isentropic flow, determine T2, P2, and Ma2

at a location where the flow area has been reduced by 20 percent.



Converging–Diverging Nozzles
When we think of nozzles, we ordinarily think of flow passages whose

cross-sectional area decreases in the flow direction. However, the highest

velocity to which a fluid can be accelerated in a converging nozzle is limited

to the sonic velocity (Ma � 1), which occurs at the exit plane (throat) of the

nozzle. Accelerating a fluid to supersonic velocities (Ma � 1) can be accom-

plished only by attaching a diverging flow section to the subsonic nozzle at

the throat. The resulting combined flow section is a converging–diverging

nozzle, which is standard equipment in supersonic aircraft and rocket propul-

sion (Fig. 17–26).

Forcing a fluid through a converging–diverging nozzle is no guarantee

that the fluid will be accelerated to a supersonic velocity. In fact, the fluid

may find itself decelerating in the diverging section instead of accelerating

if the back pressure is not in the right range. The state of the nozzle flow is

determined by the overall pressure ratio Pb/P0. Therefore, for given inlet

conditions, the flow through a converging–diverging nozzle is governed by

the back pressure Pb, as will be explained.
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Solution Nitrogen gas enters a converging nozzle. The properties at the

nozzle exit are to be determined.

Assumptions 1 Nitrogen is an ideal gas with k � 1.4. 2 Flow through the

nozzle is steady, one-dimensional, and isentropic.

Analysis The schematic of the duct is shown in Fig. 17–25. For isentropic

flow through a duct, the area ratio A/A* (the flow area over the area of the

throat where Ma � 1) is also listed in Table A–32. At the initial Mach

number of Ma1 � 0.3, we read

With a 20 percent reduction in flow area, A2 � 0.8A1, and

For this value of A2/A* from Table A–32, we read

Here we chose the subsonic Mach number for the calculated A2/A* instead

of the supersonic one because the duct is converging in the flow direction

and the initial flow is subsonic. Since the stagnation properties are constant

for isentropic flow, we can write

which are the temperature and pressure at the desired location.

Discussion Note that the temperature and pressure drop as the fluid accel-

erates in a converging nozzle.
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FIGURE 17–25

Schematic for Example 17–6 (not to

scale).



Consider the converging–diverging nozzle shown in Fig. 17–27. A fluid

enters the nozzle with a low velocity at stagnation pressure P0. When Pb �

P0 (case A), there will be no flow through the nozzle. This is expected since

the flow in a nozzle is driven by the pressure difference between the nozzle

inlet and the exit. Now let us examine what happens as the back pressure is

lowered.

1. When P0 � Pb � PC, the flow remains subsonic throughout the nozzle,

and the mass flow is less than that for choked flow. The fluid velocity

increases in the first (converging) section and reaches a maximum at

the throat (but Ma � 1). However, most of the gain in velocity is lost

in the second (diverging) section of the nozzle, which acts as a dif-

fuser. The pressure decreases in the converging section, reaches a

minimum at the throat, and increases at the expense of velocity in the

diverging section.

2. When Pb � PC, the throat pressure becomes P* and the fluid achieves

sonic velocity at the throat. But the diverging section of the nozzle still

acts as a diffuser, slowing the fluid to subsonic velocities. The mass

flow rate that was increasing with decreasing Pb also reaches its maxi-

mum value.

Recall that P* is the lowest pressure that can be obtained at the

throat, and the sonic velocity is the highest velocity that can be

achieved with a converging nozzle. Thus, lowering Pb further has no

influence on the fluid flow in the converging part of the nozzle or the
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FIGURE 17–26

Converging–diverging nozzles are commonly used in rocket engines to provide high thrust.

Courtesy of Pratt and Whitney, www.pratt-whitney.com/how.htm. Used by permission.



mass flow rate through the nozzle. However, it does influence the char-

acter of the flow in the diverging section.

3. When PC � Pb � PE, the fluid that achieved a sonic velocity at the

throat continues accelerating to supersonic velocities in the diverging

section as the pressure decreases. This acceleration comes to a sudden

stop, however, as a normal shock develops at a section between the

throat and the exit plane, which causes a sudden drop in velocity to sub-

sonic levels and a sudden increase in pressure. The fluid then continues

to decelerate further in the remaining part of the converging–diverging

nozzle. Flow through the shock is highly irreversible, and thus it cannot

be approximated as isentropic. The normal shock moves downstream

away from the throat as Pb is decreased, and it approaches the nozzle

exit plane as Pb approaches PE.

When Pb � PE, the normal shock forms at the exit plane of the noz-

zle. The flow is supersonic through the entire diverging section in this

case, and it can be approximated as isentropic. However, the fluid

velocity drops to subsonic levels just before leaving the nozzle as it
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The effects of back pressure on the

flow through a converging–diverging

nozzle.



crosses the normal shock. Normal shock waves are discussed in

Section 17–5.

4. When PE � Pb � 0, the flow in the diverging section is supersonic,

and the fluid expands to PF at the nozzle exit with no normal shock

forming within the nozzle. Thus, the flow through the nozzle can be

approximated as isentropic. When Pb � PF, no shocks occur within

or outside the nozzle. When Pb � PF, irreversible mixing and expan-

sion waves occur downstream of the exit plane of the nozzle. When

Pb � PF, however, the pressure of the fluid increases from PF to Pb

irreversibly in the wake of the nozzle exit, creating what are called

oblique shocks.
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EXAMPLE 17–7 Airflow through a Converging–Diverging Nozzle

Air enters a converging–diverging nozzle, shown in Fig. 17–28, at 1.0 MPa

and 800 K with a negligible velocity. The flow is steady, one-dimensional, and

isentropic with k � 1.4. For an exit Mach number of Ma � 2 and a throat

area of 20 cm2, determine (a) the throat conditions, (b) the exit plane condi-

tions, including the exit area, and (c) the mass flow rate through the nozzle.

Solution Air flows through a converging–diverging nozzle. The throat and

the exit conditions and the mass flow rate are to be determined.

Assumptions 1 Air is an ideal gas with constant specific heats at room

temperature. 2 Flow through the nozzle is steady, one-dimensional, and

isentropic.

Properties The specific heat ratio of air is given to be k � 1.4. The gas

constant of air is 0.287 kJ/kg � K.

Analysis The exit Mach number is given to be 2. Therefore, the flow must

be sonic at the throat and supersonic in the diverging section of the

nozzle. Since the inlet velocity is negligible, the stagnation pressure and

stagnation temperature are the same as the inlet temperature and pressure,

P0 � 1.0 MPa and T0 � 800 K. The stagnation density is

(a) At the throat of the nozzle Ma � 1, and from Table A–32 we read

Thus,

Also,

 � 517.5 m/s 

 V* � c* � 2kRT* � B 11.4 2 10.287 kJ>kg # K 2 1666.6 K 2 a 1000 m2>s2

1 kJ>kg
b

 r* � 0.6339r0 � 10.6339 2 14.355 kg>m3 2 � 2.761 kg/m3

 T* � 0.8333T0 � 10.8333 2 1800 K 2 � 666.6 K

 P* � 0.5283P0 � 10.5283 2 11.0 MPa 2 � 0.5283 MPa

P*

P0

� 0.5283  ÉT*

T0

� 0.8333  É
r*

r0

� 0.6339

r0 �
P0

RT0

�
1000 kPa

10.287 kPa # m3>kg # K 2 1800 K 2 � 4.355 kg>m3

A
t
 = 20 cm2

T0 = 800 K

Mae = 2

P0 = 1.0 MPa

Vi ≅ 0

FIGURE 17–28

Schematic for Example 17–7.



17–5 ■ SHOCK WAVES AND EXPANSION WAVES

We have seen that sound waves are caused by infinitesimally small pressure

disturbances, and they travel through a medium at the speed of sound. We

have also seen that for some back pressure values, abrupt changes in fluid

properties occur in a very thin section of a converging–diverging nozzle

under supersonic flow conditions, creating a shock wave. It is of interest to

study the conditions under which shock waves develop and how they affect

the flow.

Normal Shocks
First we consider shock waves that occur in a plane normal to the direction

of flow, called normal shock waves. The flow process through the shock

wave is highly irreversible and cannot be approximated as being isentropic.

Next we follow the footsteps of Pierre Lapace (1749–1827), G. F. Bern-

hard Riemann (1826–1866), William Rankine (1820–1872), Pierre Henry

Hugoniot (1851–1887), Lord Rayleigh (1842–1919), and G. I. Taylor
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(b) Since the flow is isentropic, the properties at the exit plane can also be

calculated by using data from Table A–32. For Ma � 2 we read

Thus,

and

The nozzle exit velocity could also be determined from Ve � Maece, where ce

is the speed of sound at the exit conditions:

(c) Since the flow is steady, the mass flow rate of the fluid is the same at all

sections of the nozzle. Thus it may be calculated by using properties at any

cross section of the nozzle. Using the properties at the throat, we find that

the mass flow rate is

Discussion Note that this is the highest possible mass flow rate that can

flow through this nozzle for the specified inlet conditions.

m
#

� r*A*V* � 12.761 kg>m3 2 120 � 10�4 m2 2 1517.5 m>s 2 � 2.86 kg/s

 � 845.2 m>s
 Ve � Maece � Mae2kRTe � 2B 11.4 2 10.287 kJ>kg # K 2 1444.5 K 2 a 1000 m2>s2

1 kJ>kg
b

Ve � Mae*c* � 11.6330 2 1517.5 m>s 2 � 845.1 m/s

 Ae � 1.6875A* � 11.6875 2 120 cm2 2 � 33.75 cm2

 re � 0.2300r0 � 10.2300 2 14.355 kg>m3 2 � 1.002 kg/m3

 Te � 0.5556T0 � 10.5556 2 1800 K 2 � 444.5 K

 Pe � 0.1278P0 � 10.1278 2 110 MPa 2 � 0.1278 MPa

Pe

P0

� 0.1278  
Te

T0

� 0.5556  
re

r0

� 0.2300  Mat* � 1.6330  
Ae

A*
� 1.6875



(1886–1975) and develop relationships for the flow properties before and

after the shock. We do this by applying the conservation of mass, momen-

tum, and energy relations as well as some property relations to a stationary

control volume that contains the shock, as shown in Fig. 17–29. The normal

shock waves are extremely thin, so the entrance and exit flow areas for the

control volume are approximately equal (Fig 17–30).

We assume steady flow with no heat and work interactions and no

potential energy changes. Denoting the properties upstream of the shock

by the subscript 1 and those downstream of the shock by 2, we have the

following:

Conservation of mass: (17–29)

or

Conservation of energy: (17–30)

or

(17–31)

Conservation of momentum: Rearranging Eq. 17–14 and integrating yield

(17–32)

Increase of entropy: (17–33)

We can combine the conservation of mass and energy relations into a sin-

gle equation and plot it on an h-s diagram, using property relations. The

resultant curve is called the Fanno line, and it is the locus of states that

have the same value of stagnation enthalpy and mass flux (mass flow per

unit flow area). Likewise, combining the conservation of mass and momen-

tum equations into a single equation and plotting it on the h-s diagram yield

a curve called the Rayleigh line. Both these lines are shown on the h-s dia-

gram in Fig. 17–31. As proved later in Example 17–8, the points of maxi-

mum entropy on these lines (points a and b) correspond to Ma � 1. The

state on the upper part of each curve is subsonic and on the lower part

supersonic.

The Fanno and Rayleigh lines intersect at two points (points 1 and 2),

which represent the two states at which all three conservation equations are

satisfied. One of these (state 1) corresponds to the state before the shock,

and the other (state 2) corresponds to the state after the shock. Note that

the flow is supersonic before the shock and subsonic afterward. Therefore

the flow must change from supersonic to subsonic if a shock is to occur.

The larger the Mach number before the shock, the stronger the shock will

be. In the limiting case of Ma � 1, the shock wave simply becomes a sound

wave. Notice from Fig. 17–31 that s2 � s1. This is expected since the flow

through the shock is adiabatic but irreversible.

s2 � s1 � 0

A 1P1 � P2 2 � m
# 1V2 � V1 2

h01 � h02

h1 �
V 2

1

2
� h2 �

V 2
2

2

r1V1 � r2V2

r1AV1 � r2AV2
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FIGURE 17–29

Control volume for flow across a

normal shock wave.

FIGURE 17–30

Schlieren image of a normal shock in

a Laval nozzle. The Mach number in

the nozzle just upstream (to the left) of

the shock wave is about 1.3. Boundary

layers distort the shape of the normal

shock near the walls and lead to flow

separation beneath the shock.

Photo by G. S. Settles, Penn State University. Used

by permission.



The conservation of energy principle (Eq. 17–31) requires that the stagna-

tion enthalpy remain constant across the shock; h01 � h02. For ideal gases

h � h(T ), and thus

(17–34)

That is, the stagnation temperature of an ideal gas also remains constant

across the shock. Note, however, that the stagnation pressure decreases

across the shock because of the irreversibilities, while the thermodynamic

temperature rises drastically because of the conversion of kinetic energy

into enthalpy due to a large drop in fluid velocity (see Fig. 17–32).

We now develop relations between various properties before and after the

shock for an ideal gas with constant specific heats. A relation for the ratio of

the thermodynamic temperatures T2/T1 is obtained by applying Eq. 17–18

twice:

Dividing the first equation by the second one and noting that T01 � T02, we

have

(17–35)

From the ideal-gas equation of state,

Substituting these into the conservation of mass relation r1V1 � r2V2 and

noting that Ma � V/c and , we have

(17–36)
T2

T1

�
P2V2

P1V1

�
P2Ma2c2

P1Ma1c1

�
P2Ma22T2

P1Ma12T1

� a P2

P1

b 2 aMa2

Ma1

b 2

c � 1kRT

r1 �
P1

RT1

ÉandÉr2 �
P2

RT2

T2

T1

�
1 � Ma2

1 1k � 1 2 >2
1 � Ma2

2 1k � 1 2 >2

T01

T1

� 1 � a k � 1

2
bMa2

1ÉandÉ
T02

T2

� 1 � a k � 1

2
bMa2

2

T01 � T02

Chapter 17 | 847

Ma = 1

0

 

s

S
H

O
C

K
 W

A
V

E

Subsonic flow

h

h

a

h
01

1

1

2

2

= h
02

h
02

h
01

P 02

P 01

Ma
 

= 1b

V

2

2
2

  2

(Ma
 

< 1)

Supersonic flow

(Ma
 

> 1)
h

1

s s

V 2

  
1

2

Fan
no li

ne

Rayleigh lin
e

FIGURE 17–31

The h-s diagram for flow across a

normal shock.
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normal shock.



Combining Eqs. 17–35 and 17–36 gives the pressure ratio across the shock:

(17–37)

Equation 17–37 is a combination of the conservation of mass and energy

equations; thus, it is also the equation of the Fanno line for an ideal gas with

constant specific heats. A similar relation for the Rayleigh line can be

obtained by combining the conservation of mass and momentum equations.

From Eq. 17–32,

However,

Thus,

or

(17–38)

Combining Eqs. 17–37 and 17–38 yields

(17–39)

This represents the intersections of the Fanno and Rayleigh lines and relates

the Mach number upstream of the shock to that downstream of the shock.

The occurrence of shock waves is not limited to supersonic nozzles only.

This phenomenon is also observed at the engine inlet of a supersonic air-

craft, where the air passes through a shock and decelerates to subsonic

velocities before entering the diffuser of the engine. Explosions also pro-

duce powerful expanding spherical normal shocks, which can be very

destructive (Fig. 17–33).

Various flow property ratios across the shock are listed in Table A–33 for

an ideal gas with k � 1.4. Inspection of this table reveals that Ma2 (the

Mach number after the shock) is always less than 1 and that the larger the

supersonic Mach number before the shock, the smaller the subsonic Mach

number after the shock. Also, we see that the static pressure, temperature,

and density all increase after the shock while the stagnation pressure

decreases.

The entropy change across the shock is obtained by applying the entropy-

change equation for an ideal gas across the shock:

(17–40)

which can be expressed in terms of k, R, and Ma1 by using the relations

developed earlier in this section. A plot of nondimensional entropy change

s2 � s1 � cp ln  
T2

T1

� R ln  
P2

P1

Ma2
2 �

Ma2
1 � 2> 1k � 1 2

2Ma2
1k> 1k � 1 2 � 1

P2

P1

�
1 � kMa2

1

1 � kMa2
2

P1 11 � kMa2
1 2 � P2 11 � kMa2

2 2

rV 2
� a P

RT
b 1Mac 2 2 � a P

RT
b 1Ma2kRT 2 2 � PkMa2

P1 � P2 �
m
#

A
 1V2 � V1 2 � r2V

2
2 � r1V

2
1

P2

P1

�
Ma121 � Ma2

1 1k � 1 2 >2
Ma221 � Ma2

2 1k � 1 2 >2
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across the normal shock (s2 � s1)/R versus Ma1 is shown in Fig. 17–34.

Since the flow across the shock is adiabatic and irreversible, the second law

requires that the entropy increase across the shock wave. Thus, a shock

wave cannot exist for values of Ma1 less than unity where the entropy

change would be negative. For adiabatic flows, shock waves can exist only

for supersonic flows, Ma1 � 1.
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FIGURE 17–33

Schlieren image of the blast wave

(expanding spherical normal shock)

produced by the explosion of a

firecracker detonated inside a metal can

that sat on a stool. The shock expanded

radially outward in all directions at a

supersonic speed that decreased with

radius from the center of the explosion.

The microphone at the lower right

sensed the sudden change in pressure

of the passing shock wave and

triggered the microsecond flashlamp

that exposed the photograph.

Photo by G. S. Settles, Penn State University. Used

by permission.
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Entropy change across the normal

shock.

EXAMPLE 17–8 The Point of Maximum Entropy 

on the Fanno Line

Show that the point of maximum entropy on the Fanno line (point b of Fig.

17–31) for the adiabatic steady flow of a fluid in a duct corresponds to the

sonic velocity, Ma � 1.

Solution It is to be shown that the point of maximum entropy on the Fanno

line for steady adiabatic flow corresponds to sonic velocity.

Assumptions The flow is steady, adiabatic, and one-dimensional.

Analysis In the absence of any heat and work interactions and potential

energy changes, the steady-flow energy equation reduces to

Differentiating yields

For a very thin shock with negligible change of duct area across the shock, the

steady-flow continuity (conservation of mass) equation can be expressed as

rV � constant

dh � V dV � 0

h �
V 2

2
� constant
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Differentiating, we have

Solving for dV gives

Combining this with the energy equation, we have

which is the equation for the Fanno line in differential form. At point a

(the point of maximum entropy) ds � 0. Then from the second T ds relation

(T ds � dh � v dP) we have dh � v dP � dP/r. Substituting yields

Solving for V, we have

which is the relation for the speed of sound, Eq. 17–9. Thus the proof is

complete.

V � a 0P

0r
b 1>2

s

dP

r
� V2  

dr

r
� 0ÉÉat s � constant

dh � V2  
dr

r
� 0

dV � �V  
dr

r

r dV � V dr � 0

EXAMPLE 17–9 Shock Wave in a Converging–Diverging Nozzle

If the air flowing through the converging–diverging nozzle of Example 17–7

experiences a normal shock wave at the nozzle exit plane (Fig. 17–35), deter-

mine the following after the shock: (a) the stagnation pressure, static pres-

sure, static temperature, and static density; (b) the entropy change across the

shock; (c) the exit velocity; and (d ) the mass flow rate through the nozzle.

Assume steady, one-dimensional, and isentropic flow with k � 1.4 from the

nozzle inlet to the shock location.

Solution Air flowing through a converging–diverging nozzle experiences a

normal shock at the exit. The effect of the shock wave on various properties

is to be determined.

Assumptions 1 Air is an ideal gas with constant specific heats at room

temperature. 2 Flow through the nozzle is steady, one-dimensional, and

isentropic before the shock occurs. 3 The shock wave occurs at the exit

plane.

Properties The constant-pressure specific heat and the specific heat ratio of

air are cp � 1.005 kJ/kg · K and k � 1.4. The gas constant of air is 0.287

kJ/kg � K (Table A–2a).

Analysis (a) The fluid properties at the exit of the nozzle just before the

shock (denoted by subscript 1) are those evaluated in Example 17–7 at the

nozzle exit to be

P01 � 1.0 MPaÉP1 � 0.1278 MPa  T1 � 444.5 KÉr1 � 1.002 kg>m3

T
 
= 444.5 K

Ma1 = 2

P
01

1

1

1

 
= 1.0 MPa

P  = 0.1278 MPa

 = 1.002 kg/mr 3

Shock wave

1 2
m = 2.86 kg/s·

FIGURE 17–35

Schematic for Example 17–9.



Example 17–9 illustrates that the stagnation pressure and velocity

decrease while the static pressure, temperature, density, and entropy

increase across the shock. The rise in the temperature of the fluid down-

stream of a shock wave is of major concern to the aerospace engineer

because it creates heat transfer problems on the leading edges of wings and

nose cones of space reentry vehicles and the recently proposed hypersonic

space planes. Overheating, in fact, led to the tragic loss of the space shuttle

Columbia in February of 2003 as it was reentering earth’s atmosphere.
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The fluid properties after the shock (denoted by subscript 2) are related

to those before the shock through the functions listed in Table A–33. For

Ma1 � 2.0, we read

Then the stagnation pressure P02, static pressure P2, static temperature T2,

and static density r2 after the shock are

(b) The entropy change across the shock is

Thus, the entropy of the air increases as it experiences a normal shock,

which is highly irreversible.

(c) The air velocity after the shock can be determined from V2 � Ma2c2,

where c2 is the speed of sound at the exit conditions after the shock:

(d) The mass flow rate through a converging–diverging nozzle with sonic

conditions at the throat is not affected by the presence of shock waves in

the nozzle. Therefore, the mass flow rate in this case is the same as that

determined in Example 17–7:

Discussion This result can easily be verified by using property values at the

nozzle exit after the shock at all Mach numbers significantly greater than unity.

m
#

� 2.86 kg/s

 � 317 m/s

 � 10.5774 2B 11.4 2 10.287 kJ>kg # K 2 1750 K 2 a 1000 m2>s2

1 kJ>kg
b

 V2 � Ma2c2 � Ma22kRT2

 � 0.0942 kJ/kg # K

 � 11.005 kJ>kg # K 2 ln 11.6875 2 � 10.287 kJ>kg # K 2 ln 14.5000 2
 s2 � s1 � cp ln   

T2

T1

� R ln   
P2

P1

 r2 � 2.6667r1 � 12.6667 2 11.002 kg>m3 2 � 2.67 kg/m3

 T2 � 1.6875T1 � 11.6875 2 1444.5 K 2 � 750 K

 P2 � 4.5000P1 � 14.5000 2 10.1278 MPa 2 � 0.575 MPa

 P02 � 0.7209P01 � 10.7209 2 11.0 MPa 2 � 0.721 MPa

Ma2 � 0.5774É
P02

P01

� 0.7209É
P2

P1

� 4.5000É
T2

T1

� 1.6875É
r2

r1

� 2.6667



Oblique Shocks
Not all shock waves are normal shocks (perpendicular to the flow direc-

tion). For example, when the space shuttle travels at supersonic speeds

through the atmosphere, it produces a complicated shock pattern consisting

of inclined shock waves called oblique shocks (Fig. 17–36). As you can

see, some portions of an oblique shock are curved, while other portions are

straight.

First, we consider straight oblique shocks, like that produced when a uni-

form supersonic flow (Ma1 � 1) impinges on a slender, two-dimensional

wedge of half-angle d (Fig. 17–37). Since information about the wedge

cannot travel upstream in a supersonic flow, the fluid “knows” nothing

about the wedge until it hits the nose. At that point, since the fluid cannot

flow through the wedge, it turns suddenly through an angle called the

turning angle or deflection angle u. The result is a straight oblique shock

wave, aligned at shock angle or wave angle b, measured relative to the

oncoming flow (Fig. 17–38). To conserve mass, b must obviously be

greater than d. Since the Reynolds number of supersonic flows is typically

large, the boundary layer growing along the wedge is very thin, and we

ignore its effects. The flow therefore turns by the same angle as the wedge;

namely, deflection angle u is equal to wedge half-angle d. If we take into

account the displacement thickness effect of the boundary layer, the deflec-

tion angle u of the oblique shock turns out to be slightly greater than

wedge half-angle d.

Like normal shocks, the Mach number decreases across an oblique shock,

and oblique shocks are possible only if the upstream flow is supersonic.

However, unlike normal shocks, in which the downstream Mach number is

always subsonic, Ma2 downstream of an oblique shock can be subsonic,

sonic, or supersonic, depending on the upstream Mach number Ma1 and the

turning angle.
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FIGURE 17–36

Schlieren image of a small model of

the space shuttle Orbiter being tested

at Mach 3 in the supersonic wind

tunnel of the Penn State Gas

Dynamics Lab. Several oblique shocks

are seen in the air surrounding the

spacecraft.

Photo by G. S. Settles, Penn State University. Used

by permission.

d

b

u
Ma1

Ma1

Ma2

Oblique
shock

FIGURE 17–37

An oblique shock of shock angle b

formed by a slender, two-dimensional

wedge of half-angle d. The flow is

turned by deflection angle u

downstream of the shock, and the

Mach number decreases.



We analyze a straight oblique shock in Fig. 17–38 by decomposing the

velocity vectors upstream and downstream of the shock into normal and tan-

gential components, and considering a small control volume around the

shock. Upstream of the shock, all fluid properties (velocity, density, pres-

sure, etc.) along the lower left face of the control volume are identical to

those along the upper right face. The same is true downstream of the shock.

Therefore, the mass flow rates entering and leaving those two faces cancel

each other out, and conservation of mass reduces to

(17–41)

where A is the area of the control surface that is parallel to the shock. Since

A is the same on either side of the shock, it has dropped out of Eq. 17–41.

As you might expect, the tangential component of velocity (parallel to the

oblique shock) does not change across the shock (i.e., V1,t � V2,t). This is

easily proven by applying the tangential momentum equation to the control

volume.

When we apply conservation of momentum in the direction normal to the

oblique shock, the only forces are pressure forces, and we get

(17–42)

Finally, since there is no work done by the control volume and no heat

transfer into or out of the control volume, stagnation enthalpy does not

change across an oblique shock, and conservation of energy yields

But since V1,t � V2,t, this equation reduces to

(17–43)

Careful comparison reveals that the equations for conservation of mass,

momentum, and energy (Eqs. 17–41 through 17–43) across an oblique

shock are identical to those across a normal shock, except that they are writ-

ten in terms of the normal velocity component only. Therefore, the normal

shock relations derived previously apply to oblique shocks as well, but must

be written in terms of Mach numbers Ma1,n and Ma2,n normal to the oblique

shock. This is most easily visualized by rotating the velocity vectors in

Fig. 17–38 by angle p/2 � b, so that the oblique shock appears to be verti-

cal (Fig. 17–39). Trigonometry yields

(17–44)

where Ma1,n � V1,n /c1 and Ma2,n � V2,n /c2. From the point of view shown

in Fig. 17–40, we see what looks like a normal shock, but with some super-

posed tangential flow “coming along for the ride.” Thus,

All the equations, shock tables, etc., for normal shocks apply to oblique shocks
as well, provided that we use only the normal components of the Mach number.

In fact, you may think of normal shocks as special oblique shocks in

which shock angle b � p/2, or 90°. We recognize immediately that an

oblique shock can exist only if Ma1,n � 1, and Ma2,n � 1. The normal shock

Ma1,n � Ma1 sin bÉandÉMa2,n � Ma2 sin 1b � u 2

h1 �
1

2
 V 2

1,n � h2 �
1

2
 V 2

2,n

h01 � h02 � h0  S   h1 �
1

2
V 2

1,n �
1

2
V 2

1,t � h2 �
1

2
V 2

2,n �
1

2
V 2

2,t

P1 A � P2A � rV2,n AV2,n � rV1,n AV1,n S  P1 � P2 � r2V
2
2,n � r1V

2
1,n

r1V1,n A � r2V2,n A S  r1V1,n � r2V2,n
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FIGURE 17–38

Velocity vectors through an oblique

shock of shock angle b and deflection

angle u.
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FIGURE 17–39

The same velocity vectors of Fig.

17–38, but rotated by angle p/2 – b,

so that the oblique shock is vertical.

Normal Mach numbers Ma1,n and

Ma2,n are also defined.



equations appropriate for oblique shocks in an ideal gas are summarized in

Fig. 17–40 in terms of Ma1,n.

For known shock angle b and known upstream Mach number Ma1, we use

the first part of Eq. 17–44 to calculate Ma1,n, and then use the normal shock

tables (or their corresponding equations) to obtain Ma2,n. If we also knew the

deflection angle u, we could calculate Ma2 from the second part of Eq. 17–44.

But, in a typical application, we know either b or u, but not both. Fortunately,

a bit more algebra provides us with a relationship between u, b, and Ma1. We

begin by noting that tan b � V1,n/V1,t and tan(b � u) � V2,n /V2,t (Fig. 17–39).

But since V1,t � V2,t, we combine these two expressions to yield

(17–45)

where we have also used Eq. 17–44 and the fourth equation of Fig. 17–40.

We apply trigonometric identities for cos 2b and tan(b � u), namely,

After some algebra, Eq. 17–45 reduces to

The u-b-Ma relationship: (17–46)

Equation 17–46 provides deflection angle u as a unique function of

shock angle b, specific heat ratio k, and upstream Mach number Ma1. For

air (k � 1.4), we plot u versus b for several values of Ma1 in Fig. 17–41.

We note that this plot is often presented with the axes reversed (b versus u)

in compressible flow textbooks, since, physically, shock angle b is deter-

mined by deflection angle u.

Much can be learned by studying Fig. 17–41, and we list some observa-

tions here:

• Figure 17–41 displays the full range of possible shock waves at a given

free-stream Mach number, from the weakest to the strongest. For any value

of Mach number Ma1 greater than 1, the possible values of u range from 

u� 0° at some value of b between 0 and 90°, to a maximum value u� umax

at an intermediate value of b, and then back to u� 0° at b� 90°. Straight

oblique shocks for u or b outside of this range cannot and do not exist. At

Ma1 � 1.5, for example, straight oblique shocks cannot exist in air with

shock angle b less than about 42°, nor with deflection angle u greater than

about 12°. If the wedge half-angle is greater than umax, the shock becomes

curved and detaches from the nose of the wedge, forming what is called a

detached oblique shock or a bow wave (Fig. 17–42). The shock angle b

of the detached shock is 90° at the nose, but b decreases as the shock curves

downstream. Detached shocks are much more complicated than simple

straight oblique shocks to analyze. In fact, no simple solutions exist, and

prediction of detached shocks requires computational methods.

• Similar oblique shock behavior is observed in axisymmetric flow over

cones, as in Fig. 17–43, although the u-b-Ma relationship for

axisymmetric flows differs from that of Eq. 17–46.

tan u �
2 cot b 1Ma2

1 sin2 b � 1 2
Ma2

1 1k � cos 2b 2 � 2

cos 2b � cos2 b � sin2 b  and  tan 1b � u 2 �
tan  b � tan  u

1 � tan  b tan  u

V2,n

V1,n

�
tan 1b � u 2

tan b
�

2 � 1k � 1 2Ma2
1,n

1k � 1 2Ma2
1,n

�
2 � 1k � 1 2Ma2

1 sin2  b

1k � 1 2Ma2
1 sin2  b
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FIGURE 17–40

Relationships across an oblique

shock for an ideal gas in terms of the

normal component of upstream Mach

number Ma1,n.



• When supersonic flow impinges on a blunt body—a body without a

sharply pointed nose, the wedge half-angle d at the nose is 90°, and an

attached oblique shock cannot exist, regardless of Mach number. In fact,

a detached oblique shock occurs in front of all such blunt-nosed bodies,

whether two-dimensional, axisymmetric, or fully three-dimensional. For

example, a detached oblique shock is seen in front of the space shuttle

model in Fig. 17–36 and in front of a sphere in Fig. 17–44.

• While u is a unique function of Ma1 and b for a given value of k, there are

two possible values of b for u � umax. The dashed black line in Fig. 17–41

passes through the locus of umax values, dividing the shocks into weak

oblique shocks (the smaller value of b) and strong oblique shocks (the

larger value of b). At a given value of u, the weak shock is more common

and is “preferred” by the flow unless the downstream pressure conditions

are high enough for the formation of a strong shock.

• For a given upstream Mach number Ma1, there is a unique value of u for

which the downstream Mach number Ma2 is exactly 1. The dashed gray

line in Fig. 17–41 passes through the locus of values where Ma2 � 1.

To the left of this line, Ma2 � 1, and to the right of this line, Ma2 � 1.

Downstream sonic conditions occur on the weak shock side of the plot,

with u very close to umax. Thus, the flow downstream of a strong oblique

shock is always subsonic (Ma2 � 1). The flow downstream of a weak

oblique shock remains supersonic, except for a narrow range of u just

below umax, where it is subsonic, although it is still called a weak

oblique shock.

• As the upstream Mach number approaches infinity, straight oblique

shocks become possible for any b between 0 and 90°, but the maximum

possible turning angle for k � 1.4 (air) is umax � 45.6°, which occurs at b

� 67.8°. Straight oblique shocks with turning angles above this value of

umax are not possible, regardless of the Mach number.

• For a given value of upstream Mach number, there are two shock angles

where there is no turning of the flow (u � 0°): the strong case, b � 90°,
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The dependence of straight oblique

shock deflection angle u on shock

angle b for several values of upstream

Mach number Ma1. Calculations are

for an ideal gas with k � 1.4. The

dashed black line connects points of

maximum deflection angle (u � umax).

Weak oblique shocks are to the left of

this line, while strong oblique shocks

are to the right of this line. The dashed

gray line connects points where the

downstream Mach number is sonic

(Ma2 � 1). Supersonic downstream

flow (Ma2 � 1) is to the left of this

line, while subsonic downstream flow

(Ma2 � 1) is to the right of this line.

Ma1

Detached
oblique
shock

d � umax

FIGURE 17–42

A detached oblique shock occurs

upstream of a two-dimensional wedge

of half-angle d when d is greater than

the maximum possible deflection

angle u. A shock of this kind is called

a bow wave because of its

resemblance to the water wave that

forms at the bow of a ship.



corresponds to a normal shock, and the weak case, b � bmin, represents

the weakest possible oblique shock at that Mach number, which is called

a Mach wave. Mach waves are caused, for example, by very small

nonuniformities on the walls of a supersonic wind tunnel (several can be

seen in Figs. 17–36 and 17–43). Mach waves have no effect on the flow,

since the shock is vanishingly weak. In fact, in the limit, Mach waves are

isentropic. The shock angle for Mach waves is a unique function of the

Mach number and is given the symbol m, not to be confused with the

coefficient of viscosity. Angle m is called the Mach angle and is found by

setting u equal to zero in Eq. 17–46, solving for b � m, and taking the

smaller root. We get

Mach angle: (17–47)

Since the specific heat ratio appears only in the denominator of Eq.

17–46, m is independent of k. Thus, we can estimate the Mach number of

any supersonic flow simply by measuring the Mach angle and applying

Eq. 17–47.

Prandtl–Meyer Expansion Waves
We now address situations where supersonic flow is turned in the opposite

direction, such as in the upper portion of a two-dimensional wedge at an

angle of attack greater than its half-angle d (Fig. 17–45). We refer to this

type of flow as an expanding flow, whereas a flow that produces an oblique

shock may be called a compressing flow. As previously, the flow changes

direction to conserve mass. However, unlike a compressing flow, an expand-

ing flow does not result in a shock wave. Rather, a continuous expanding

region called an expansion fan appears, composed of an infinite number of

Mach waves called Prandtl–Meyer expansion waves. In other words, the

flow does not turn suddenly, as through a shock, but gradually—each suc-

cessive Mach wave turns the flow by an infinitesimal amount. Since each

individual expansion wave is isentropic, the flow across the entire expansion

fan is also isentropic. The Mach number downstream of the expansion

increases (Ma2 � Ma1), while pressure, density, and temperature decrease,

just as they do in the supersonic (expanding) portion of a converging–

diverging nozzle.

Prandtl–Meyer expansion waves are inclined at the local Mach angle m,

as sketched in Fig. 17–45. The Mach angle of the first expansion wave is

easily determined as m1 � sin�1(1/Ma1). Similarly, m2 � sin�1(1/Ma2),

m � sin�1 11>Ma1 2
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Ma1

d

FIGURE 17–43

Still frames from schlieren

videography illustrating the

detachment of an oblique shock from a

cone with increasing cone half-angle d

in air at Mach 3. At (a) d� 20	 and

(b) d� 40	, the oblique shock remains

attached, but by (c) d� 60	, the

oblique shock has detached, forming 

a bow wave.

Photos by G. S. Settles, Penn State University. 

Used by permission.

FIGURE 17–44

Shadowgram of a one-half-in diameter

sphere in free flight through air at Ma

� 1.53. The flow is subsonic behind

the part of the bow wave that is ahead

of the sphere and over its surface back

to about 45	. At about 90	 the laminar

boundary layer separates through an

oblique shock wave and quickly

becomes turbulent. The fluctuating

wake generates a system of weak

disturbances that merge into the

second “recompression” shock wave.

Photo by A. C. Charters, Army Ballistic Research

Laboratory.

(a) (b) (c)



where we must be careful to measure the angle relative to the new direction

of flow downstream of the expansion, namely, parallel to the upper wall of

the wedge in Fig. 17–45 if we neglect the influence of the boundary layer

along the wall. But how do we determine Ma2? It turns out that the turning

angle u across the expansion fan can be calculated by integration, making

use of the isentropic flow relationships. For an ideal gas, the result is

(Anderson, 2003),

Turning angle across an expansion fan: (17–48)

where n(Ma) is an angle called the Prandtl–Meyer function (not to be con-

fused with the kinematic viscosity),

(17–49)

Note that n(Ma) is an angle, and can be calculated in either degrees or radi-

ans. Physically, n(Ma) is the angle through which the flow must expand,

starting with n � 0 at Ma � 1, in order to reach a supersonic Mach number,

Ma � 1.

To find Ma2 for known values of Ma1, k, and u, we calculate n(Ma1) from

Eq. 17–49, n(Ma2) from Eq. 17–48, and then Ma2 from Eq. 17–49, noting

that the last step involves solving an implicit equation for Ma2. Since there

is no heat transfer or work, and the flow is isentropic through the expansion,

T0 and P0 remain constant, and we use the isentropic flow relations derived

previously to calculate other flow properties downstream of the expansion,

such as T2, r2, and P2.

Prandtl–Meyer expansion fans also occur in axisymmetric supersonic

flows, as in the corners and trailing edges of a cone-cylinder (Fig. 17–46).

Some very complex and, to some of us, beautiful interactions involving

both shock waves and expansion waves occur in the supersonic jet pro-

duced by an “overexpanded” nozzle, as in Fig. 17–47. Analysis of such

flows is beyond the scope of the present text; interested readers are referred

to compressible flow textbooks such as Thompson (1972) and Anderson

(2003).

n 1Ma 2 � B
k � 1

k � 1
 tan�1 cB

k � 1

k � 1
1Ma2

� 1 2 d � tan�1 a2Ma2
� 1 b

u � n 1Ma2 2 � n 1Ma1 2
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FIGURE 17–46

A cone-cylinder of 12.5	 half-angle in

a Mach number 1.84 flow. The

boundary layer becomes turbulent

shortly downstream of the nose,

generating Mach waves that are visible

in this shadowgraph. Expansion waves

are seen at the corners and at the

trailing edge of the cone.

Photo by A. C. Charters, Army Ballistic Research

Laboratory.

d

u
Ma1 � 1

m1
m2

Ma2

Expansion
waves

Oblique
shock

FIGURE 17–45

An expansion fan in the upper 

portion of the flow formed by a two-

dimensional wedge at the angle of

attack in a supersonic flow. The flow

is turned by angle u, and the Mach

number increases across the expansion

fan. Mach angles upstream and

downstream of the expansion fan are

indicated. Only three expansion waves

are shown for simplicity, but in fact,

there are an infinite number of them.

(An oblique shock is present in the

bottom portion of this flow.)
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FIGURE 17–47

The complex interactions between

shock waves and expansion waves in

an “overexpanded” supersonic jet.

The flow is visualized by a schlieren-

like differential interferogram.

Photo by H. Oertel sen. Reproduced by courtesy of

the French-German Research Institute of Saint-

Louis, ISL. Used with permission.

EXAMPLE 17–10 Estimation of the Mach Number 

from Mach Lines

Estimate the Mach number of the free-stream flow upstream of the space

shuttle in Fig. 17–36 from the figure alone. Compare with the known value

of Mach number provided in the figure caption.

Solution We are to estimate the Mach number from a figure and compare

it to the known value.

Analysis Using a protractor, we measure the angle of the Mach lines in the

free-stream flow: m � 19°. The Mach number is obtained from Eq. 17–47,

Our estimated Mach number agrees with the experimental value of 3.0 � 0.1.

Discussion The result is independent of the fluid properties.

m � sin�1 a 1

Ma1

b   S   Ma
1

�
1

sin 19°
   S   Ma1 � 3.07

EXAMPLE 17–11 Oblique Shock Calculations

Supersonic air at Ma1 � 2.0 and 75.0 kPa impinges on a two-dimensional

wedge of half-angle d � 10° (Fig. 17–48). Calculate the two possible

oblique shock angles, bweak and bstrong, that could be formed by this wedge.

For each case, calculate the pressure and Mach number downstream of the

oblique shock, compare, and discuss.

Solution We are to calculate the shock angle, Mach number, and pressure

downstream of the weak and strong oblique shocks formed by a two-

dimensional wedge.

Assumptions 1 The flow is steady. 2 The boundary layer on the wedge is

very thin.

Properties The fluid is air with k � 1.4.

Ma1

Strong
shock

d � 10°

bstrong

(a)

(b)

Ma1

Weak
shock

d � 10°

bweak

FIGURE 17–48

Two possible oblique shock angles,

(a) bweak and (b) bstrong, formed by a

two-dimensional wedge of half-angle

d � 10�.
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Analysis Because of assumption 2, we approximate the oblique shock

deflection angle as equal to the wedge half-angle, i.e., u � d � 10°. With

Ma1 � 2.0 and u � 10°, we solve Eq. 17–46 for the two possible values of

oblique shock angle b: Bweak � 39.3° and Bstrong � 83.7°. From these values,

we use the first part of Eq. 17–44 to calculate the upstream normal Mach

number Ma1,n,

Weak shock:

Strong shock:

We substitute these values of Ma1,n into the second equation of Fig. 17–40

to calculate the downstream normal Mach number Ma2,n. For the weak

shock, Ma2,n � 0.8032, and for the strong shock, Ma2,n � 0.5794. We also

calculate the downstream pressure for each case, using the third equation of

Fig. 17–40, which gives

Weak shock:

Strong shock:

Finally, we use the second part of Eq. 17–44 to calculate the downstream

Mach number,

Weak shock:

Strong shock:

The changes in Mach number and pressure across the strong shock are

much greater than the changes across the weak shock, as expected.

Discussion Since Eq. 17–46 is implicit in b, we solve it by an iterative

approach or with an equation solver such as EES. For both the weak and

strong oblique shock cases, Ma1,n is supersonic and Ma2,n is subsonic. How-

ever, Ma2 is supersonic across the weak oblique shock, but subsonic across

the strong oblique shock. We could also use the normal shock tables in

place of the equations, but with loss of precision.

Ma2 �
Ma2,n

sin 1b � u 2 �
0.5794

sin 183.7° � 10° 2 � 0.604

Ma2 �
Ma2,n

sin 1b � u 2 �
0.8032

sin 139.3° � 10° 2 � 1.64

P2

P1

�
2kMa2

1,n � k � 1

k � 1
S P2 � 175.0 kPa 2  2 11.4 2 11.988 2 2 � 1.4 � 1

1.4 � 1
� 333 kPa

P2

P1

�
2kMa2

1,n � k � 1

k � 1
S P2 � 175.0 kPa 2  2 11.4 2 11.267 2 2 � 1.4 � 1

1.4 � 1
� 128 kPa

Ma1,n � Ma1 sin b  S   Ma1,n � 2.0 sin 83.7° � 1.988

Ma1,n � Ma1 sin b  S   Ma1,n � 2.0 sin 39.3° � 1.267

EXAMPLE 17–12 Prandtl–Meyer Expansion Wave Calculations

Supersonic air at Ma1 � 2.0 and 230 kPa flows parallel to a flat wall that

suddenly expands by d � 10° (Fig. 17–49). Ignoring any effects caused by

the boundary layer along the wall, calculate downstream Mach number Ma2

and pressure P2.

Ma1 � 2.0

Ma2

d � 10°

u

FIGURE 17–49

An expansion fan caused by the sudden

expansion of a wall with d� 10	.



17–6 ■ DUCT FLOW WITH HEAT TRANSFER AND
NEGLIGIBLE FRICTION (RAYLEIGH FLOW)

So far we have limited our consideration mostly to isentropic flow, also

called reversible adiabatic flow since it involves no heat transfer and no

irreversibilities such as friction. Many compressible flow problems encoun-

tered in practice involve chemical reactions such as combustion, nuclear

reactions, evaporation, and condensation as well as heat gain or heat loss

through the duct wall. Such problems are difficult to analyze exactly since

they may involve significant changes in chemical composition during flow,

and the conversion of latent, chemical, and nuclear energies to thermal

energy (Fig. 17–50).

The essential features of such complex flows can still be captured by a

simple analysis by modeling the generation or absorption of thermal energy
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Solution We are to calculate the Mach number and pressure downstream of

a sudden expansion along a wall.

Assumptions 1 The flow is steady. 2 The boundary layer on the wall is

very thin.

Properties The fluid is air with k � 1.4.

Analysis Because of assumption 2, we approximate the total deflection

angle as equal to the wall expansion angle (i.e., u � d � 10°). With Ma1 �

2.0, we solve Eq. 17–49 for the upstream Prandtl–Meyer function,

Next, we use Eq. 17–48 to calculate the downstream Prandtl–Meyer function,

Ma2 is found by solving Eq. 17–49, which is implicit—an equation solver is

helpful. We get Ma2 � 2.385. There are also compressible flow calculators

on the Internet that solve these implicit equations, along with both normal

and oblique shock equations; e.g., see www.aoe.vt.edu/~devenpor/aoe3114/calc

.html.

We use the isentropic relations to calculate the downstream pressure,

Since this is an expansion, Mach number increases and pressure decreases,

as expected.

Discussion We could also solve for downstream temperature, density, etc.,

using the appropriate isentropic relations.

P2 �
P2>P0

P1>P0

 P1 �

c1 � a k � 1

2
bMa2

2 d
�k>1k�12

c1 � a k � 1

2
bMa2

1 d
�k>1k�12 1230 kPa 2 � 126 kPa

u � n 1Ma2 2 � n 1Ma1 2 S n 1Ma2 2 � u � n 1Ma1 2 � 10° � 26.38° � 36.38°

 � B
1.4 � 1

1.4 � 1
 tan�1 cB

1.4 � 1

1.4 � 1
12.02 �1 2 d � tan�1 a22.02 �1 b � 26.38°

 n 1Ma 2 � B
k � 1

k � 1
 tan�1 cB

k � 1

k � 1
1Ma2 �1 2 d � tan�1 a2Ma2

�1 b  

Fuel nozzles or spray bars

Flame holders

Air inlet

FIGURE 17–50

Many practical compressible flow

problems involve combustion, which

may be modeled as heat gain through

the duct wall.



as heat transfer through the duct wall at the same rate and disregarding any

changes in chemical composition. This simplified problem is still too com-

plicated for an elementary treatment of the topic since the flow may involve

friction, variations in duct area, and multidimensional effects. In this sec-

tion, we limit our consideration to one-dimensional flow in a duct of con-

stant cross-sectional area with negligible frictional effects.

Consider steady one-dimensional flow of an ideal gas with constant spe-

cific heats through a constant-area duct with heat transfer, but with negligible

friction. Such flows are referred to as Rayleigh flows after Lord Rayleigh

(1842–1919). The conservation of mass, momentum, and energy equations

for the control volume shown in Fig. 17–51 can be written as follows:

Mass equation Noting that the duct cross-sectional area A is constant, the

relation m
.

1 � m
.

2 or r1A1V1 � r2A2V2 reduces to

(17–50)

x-Momentum equation Noting that the frictional effects are negligible

and thus there are no shear forces, and assuming there are no external  

and body forces, the momentum equation 

in the flow (or x-) direction becomes a balance between static pressure

forces and momentum transfer. Noting that the flows are high speed

and turbulent, the momentum flux correction factor is approximately 1

(b� 1) and thus can be neglected. Then,

or

(17–51)

Energy equation The control volume involves no shear, shaft, or other

forms of work, and the potential energy change is negligible. If the rate

of heat transfer is Q
.
and the heat transfer per unit mass of fluid is q �

Q
.
/m

.
, the steady-flow energy balance E

.
in � E

.
out becomes

(17–52)

For an ideal gas with constant specific heats, �h � cp �T, and thus

(17–53)

or

(17–54)

Therefore, the stagnation enthalpy h0 and stagnation temperature T0

change during Rayleigh flow (both increase when heat is transferred to

the fluid and thus q is positive, and both decrease when heat is trans-

ferred from the fluid and thus q is negative).

Entropy change In the absence of any irreversibilities such as friction,

the entropy of a system changes by heat transfer only: it increases with

heat gain, and decreases with heat loss. Entropy is a property and thus

q � h02 � h01 � cp 1T02 � T01 2

q � cp 1T2 � T1 2 �
V2

2 � V2
1

2

Q
#

� m
# ah1 �

V2
1

2
b � m

# ah2 �
V2

2

2
b   S   q � h1 �

V 2
1

2
� h2 �

V 2
2

2

P1 � r1V
2
1 � P2 � r2V

2
2

P1A1 � P2A2 � m
#
V2 � m

#
V1  S   P1 � P2 � 1r2V2 2V2 � 1r1V1 2V1

a F
!
�a

out

bm
#
V

!
�a

in

bm
#
V

!

r1V1 � r2V2
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P1, T1, r1 P2, T2, r2

V1

Control
volume

Q
.

V2

FIGURE 17–51

Control volume for flow in a constant-

area duct with heat transfer and

negligible friction.



a state function, and the entropy change of an ideal gas with constant

specific heats during a change of state from 1 to 2 is given by

(17–55)

The entropy of a fluid may increase or decrease during Rayleigh flow,

depending on the direction of heat transfer.

Equation of state Noting that P � rRT, the properties P, r, and T of an

ideal gas at states 1 and 2 are related to each other by

(17–56)

Consider a gas with known properties R, k, and cp. For a specified inlet

state 1, the inlet properties P1, T1, r1, V1, and s1 are known. The five exit

properties P2, T2, r2, V2, and s2 can be determined from the five equations

17–50, 17–51, 17–53, 17–55, and 17–56 for any specified value of heat

transfer q. When the velocity and temperature are known, the Mach number 

can be determined from .

Obviously there is an infinite number of possible downstream states 2

corresponding to a given upstream state 1. A practical way of determining

these downstream states is to assume various values of T2, and calculate all

other properties as well as the heat transfer q for each assumed T2 from the

Eqs. 17–50 through 17–56. Plotting the results on a T-s diagram gives a

curve passing through the specified inlet state, as shown in Fig. 17–52. The

plot of Rayleigh flow on a T-s diagram is called the Rayleigh line, and sev-

eral important observations can be made from this plot and the results of the

calculations:

1. All the states that satisfy the conservation of mass, momentum, and

energy equations as well as the property relations are on the Rayleigh

line. Therefore, for a given initial state, the fluid cannot exist at any

downstream state outside the Rayleigh line on a T-s diagram. In fact,

the Rayleigh line is the locus of all physically attainable downstream

states corresponding to an initial state.

2. Entropy increases with heat gain, and thus we proceed to the right on

the Rayleigh line as heat is transferred to the fluid. The Mach number is

Ma � 1 at point a, which is the point of maximum entropy (see Exam-

ple 17–13 for proof). The states on the upper arm of the Rayleigh line

above point a are subsonic, and the states on the lower arm below point

a are supersonic. Therefore, a process proceeds to the right on the Ray-

leigh line with heat addition and to the left with heat rejection regard-

less of the initial value of the Mach number.

3. Heating increases the Mach number for subsonic flow, but decreases it

for supersonic flow. The flow Mach number approaches Ma � 1 in both

cases (from 0 in subsonic flow and from ∞ in supersonic flow) during

heating.

4. It is clear from the energy balance q � cp(T02 � T01) that heating

increases the stagnation temperature T0 for both subsonic and super-

sonic flows, and cooling decreases it. (The maximum value of T0 occurs

at Ma � 1.) This is also the case for the thermodynamic temperature T

Ma � V>c � V>1kRT

P1

r1T1

�
P2

r2T2

s2 � s1 � cp  ln  
T2

T1

� R   ln  
P2

P1
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Mab = 1/   k

Maa = 1

a

a

b
Ma < 1

Ma > 1

Cooling 
(Ma S 0)

Cooling 
(Ma S �)

Heating 
(Ma S 1)

Heating 
(Ma S 1)

Tmax

smax

s

T

FIGURE 17–52

T-s diagram for flow in a constant-area

duct with heat transfer and negligible

friction (Rayleigh flow).



except for the narrow Mach number range of � Ma � 1 in sub-

sonic flow (see Example 17–13). Both temperature and the Mach num-

ber increase with heating in subsonic flow, but T reaches a maximum

Tmax at Ma � (which is 0.845 for air), and then decreases. It may

seem peculiar that the temperature of a fluid drops as heat is transferred

to it. But this is no more peculiar than the fluid velocity increasing in

the diverging section of a converging–diverging nozzle. The cooling

effect in this region is due to the large increase in the fluid velocity and

the accompanying drop in temperature in accordance with the relation T0

� T � V2/2cp. Note also that heat rejection in the region  � Ma �

1 causes the fluid temperature to increase (Fig. 17–53).

5. The momentum equation P � KV � constant, where K � rV � con-

stant (from the conservation of mass equation), reveals that velocity and

static pressure have opposite trends. Therefore, static pressure

decreases with heat gain in subsonic flow (since velocity and the

Mach number increase), but increases with heat gain in supersonic flow

(since velocity and the Mach number decrease).

6. The continuity equation rV � constant indicates that density and veloc-

ity are inversely proportional. Therefore, density decreases with heat

transfer to the fluid in subsonic flow (since velocity and the Mach num-

ber increase), but increases with heat gain in supersonic flow (since

velocity and the Mach number decrease).

7. On the left half of Fig. 17–52, the lower arm of the Rayleigh line is

steeper (in terms of s as a function of T), which indicates that the

entropy change corresponding to a specified temperature change (and

thus a given amount of heat transfer) is larger in supersonic flow.

The effects of heating and cooling on the properties of Rayleigh flow are

listed in Table 17–3. Note that heating or cooling has opposite effects on most

properties. Also, the stagnation pressure decreases during heating and increases

during cooling regardless of whether the flow is subsonic or supersonic.

1>1k

1>1k

1>1k
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T01

Supersonic
flow

Heating

T02 � T01

T1 T2 � T1

T01

Subsonic
flow

Heating

T02 � T01

T1

T2 � T1 or

T2 � T1

FIGURE 17–53

During heating, fluid temperature

always increases if the Rayleigh flow

is supersonic, but the temperature may

actually drop if the flow is subsonic.

TABLE 17–3

The effects of heating and cooling on the properties of Rayleigh flow

Heating Cooling

Property Subsonic Supersonic Subsonic Supersonic

Velocity, V Increase Decrease Decrease Increase

Mach number, Ma Increase Decrease Decrease Increase

Stagnation temperature, T0 Increase Increase Decrease Decrease

Temperature, T Increase for Ma � 1/k1/2 Increase Decrease for Ma � 1/k1/2 Decrease

Decrease for Ma � 1/k1/2 Increase for Ma � 1/k1/2

Density, r Decrease Increase Increase Decrease

Stagnation pressure, P0 Decrease Decrease Increase Increase

Pressure, P Decrease Increase Increase Decrease

Entropy, s Increase Increase Decrease Decrease
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EXAMPLE 17–13 Extrema of Rayleigh Line

Consider the T-s diagram of Rayleigh flow, as shown in Fig. 17–54. Using

the differential forms of the conservation equations and property relations,

show that the Mach number is Maa � 1 at the point of maximum entropy

(point a), and Mab � 1/ at the point of maximum temperature (point b).

Solution It is to be shown that Maa � 1 at the point of maximum entropy

and Mab � 1/ at the point of maximum temperature on the Rayleigh line.

Assumptions The assumptions associated with Rayleigh flow (i.e., steady

one-dimensional flow of an ideal gas with constant properties through a con-

stant cross-sectional-area duct with negligible frictional effects) are valid.

Analysis The differential forms of the mass (rV � constant), momentum

[rearranged as P + (rV)V � constant], ideal gas (P � rRT), and enthalpy

change (�h � cp �T) equations can be expressed as

(1)

(2)

(3)

The differential form of the entropy change relation (Eq. 17–40) of an

ideal gas with constant specific heats is

(4)

Substituting Eq. 3 into Eq. 4 gives

(5)

since

cp � R � c
v

S kc
v

� R � c
v

S c
v

� R/(k � 1)

Dividing both sides of Eq. 5 by dT and combining with Eq. 1,

(6)

Dividing Eq. 3 by dV and combining it with Eqs. 1 and 2 give, after rear-

ranging,

(7)

Substituting Eq. 7 into Eq. 6 and rearranging,

(8)

Setting ds /dT � 0 and solving the resulting equation R2(kRT � V 2) � 0 for

V give the velocity at point a to be

(9)Va � 2kRTaÉandÉMaa �
Va

ca

�
2kRTa

2kRTa

� 1

ds

dT
�

R

T 1k � 1 2 �
R

T � V 2>R �
R2 1kRT � V 2 2

T 1k � 1 2 1RT � V 2 2

dT

dV
�

T

V
�

V

R

ds

dT
�

R

T 1k � 1 2 �
R

V
 

dV

dT

ds � cp  
dT

T
� R adT

T
�

dr

r
b � 1cp � R 2  dT

T
� R  

dr

r
�

R

k � 1
 

dT

T
� R

dr

r

ds � cp  
dT

T
� R  

dP

P

 P � rRT  S   dP � rR dT � RT dr  S   
dP

P
�

dT

T
�

dr

r

 P � 1rV 2V � constant  S   dP � 1rV 2  dV � 0  S   
dP

dV
� �rV

 rV � constant  S   r dV � V dr � 0  S   
dr

r
� �

dV

V

1k

1k

smax

Tmax

Ma � 1
� 0

Ma � 1

� �

T

a
a

b

b
ds

dT

s

� 0� �dT

ds

FIGURE 17–54

The T-s diagram of Rayleigh flow

considered in Example 17–13.
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Therefore, sonic conditions exist at point a, and thus the Mach number is 1.

Setting dT/ds � (ds/dT )�1 � 0 and solving the resulting equation 

T(k � 1)(RT � V 2) � 0 for velocity at point b give

(10)

Therefore, the Mach number at point b is Mab � 1/ . For air, k � 1.4 and

thus Mab � 0.845.

Discussion Note that in Rayleigh flow, sonic conditions are reached as the

entropy reaches its maximum value, and maximum temperature occurs dur-

ing subsonic flow.

1k

Vb � 2RTbÉandÉMab �
Vb

cb

�
2RTb

2kRTb

�
1

2k

EXAMPLE 17–14 Effect of Heat Transfer on Flow Velocity

Starting with the differential form of the energy equation, show that the flow

velocity increases with heat addition in subsonic Rayleigh flow, but decreases

in supersonic Rayleigh flow.

Solution It is to be shown that flow velocity increases with heat addition in

subsonic Rayleigh flow and that the opposite occurs in supersonic flow.

Assumptions 1 The assumptions associated with Rayleigh flow are valid.

2 There are no work interactions and potential energy changes are negligible.

Analysis Consider heat transfer to the fluid in the differential amount of dq.

The differential form of the energy equations can be expressed as

(1)

Dividing by cpT and factoring out dV/V give

(2)

where we also used cp � kR/(k � 1). Noting that Ma2 � V 2/c2 � V 2/kRT and

using Eq. 7 for dT/dV from Example 17–13 give

(3)

Canceling the two middle terms in Eq. 3 since V 2/TR � kMa2 and rearrang-

ing give the desired relation,

(4)

In subsonic flow, 1 � Ma2 � 0 and thus heat transfer and velocity change

have the same sign. As a result, heating the fluid (dq � 0) increases the

flow velocity while cooling decreases it. In supersonic flow, however, 1 �

Ma2 � 0 and heat transfer and velocity change have opposite signs. As a

result, heating the fluid (dq � 0) decreases the flow velocity while cooling

increases it (Fig. 17–55).

Discussion Note that heating the fluid has the opposite effect on flow veloc-

ity in subsonic and supersonic Rayleigh flows.

dV

V
�
dq

cpT
 

1

11 � Ma2 2

dq

cpT
�

dV

V
c V

T
a T

V
�

V

R
b � 1k � 1 2Ma2 d �

dV

V
a1 �

V 2

TR
� kMa2

� Ma2 b

dq

cpT
�

dT

T
�

V dV

cpT
�

dV

V
c V

dV
 
dT

T
�

1k � 1 2V 2

kRT
d

dq � dh0 � d a h �
V 2

2
b � cp   dT � V  dV

Supersonic
flow

V1 V2 � V1

Subsonic
flow

dq

dq

V1 V2 � V1

FIGURE 17–55

Heating increases the flow velocity in

subsonic flow, but decreases it in

supersonic flow.



Property Relations for Rayleigh Flow
It is often desirable to express the variations in properties in terms of the Mach

number Ma. Noting that and thus ,

(17–57)

since P � rRT. Substituting into the momentum equation (Eq. 17–51) gives

P1 � kP1Ma1
2 � P2 � kP2Ma2

2, which can be rearranged as

(17–58)

Again utilizing V � Ma , the continuity equation r1V1 � r2V2 can be

expressed as

(17–59)

Then the ideal-gas relation (Eq. 17–56) becomes

(17–60)

Solving Eq. 17–60 for the temperature ratio T2/T1 gives

(17–61)

Substituting this relation into Eq. 17–59 gives the density or velocity ratio as

(17–62)

Flow properties at sonic conditions are usually easy to determine, and thus

the critical state corresponding to Ma � 1 serves as a convenient reference

point in compressible flow. Taking state 2 to be the sonic state (Ma2 � 1, and

superscript * is used) and state 1 to be any state (no subscript), the property

relations in Eqs. 17–58, 17–61, and 17–62 reduce to (Fig. 17–56)

(17–63)

Similar relations can be obtained for dimensionless stagnation tempera-

ture and stagnation pressure as follows:

(17–64)

which simplifies to

(17–65)
T0

T*0
�
1k � 1 2Ma2 32 � 1k � 1 2Ma2 4

11 � kMa2 2 2

T0

T*0
�

T0

T
 

T

T*
 
T *

T*0
� a1 �

k � 1

2
 Ma2 b cMa 11 � k 2

1 � kMa2
d 2 a1 �

k � 1

2
b�1

P

P*
�

1 � k

1 � kMa2
  É T

T*
� cMa 11 � k 2

1 � kMa2
d 2ÉandÉV

V*
�
r*

r
�
11 � k 2Ma2

1 � kMa2

r2

r1

�
V1

V2

�
Ma2

1 11 � kMa2
2 2

Ma2
2 11 � kMa2

1 2

T2

T1

� cMa2 11 � kMa2
1 2

Ma1 11 � kMa2
2 2 d

2

T2

T1

�
P2

P1

r1

r2

� a 1 � kMa2
1

1 � kMa2
2

b a  
Ma21T2

Ma11T1

b

r1

r2

�
V2

V1

�
Ma22kRT2

Ma12kRT1

�
Ma22T2

Ma12T1

1kRT

P2

P1

�
1 � kMa2

1

1 � kMa2
2

rV 2
� rkRTMa2

� kPMa2

V � Ma1kRTMa � V>c � V>1kRT
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1 � kMaMa2
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P*
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1 � k

1 � kMaMa2

T

T*
� aMa(Ma(1 � k)

1 � kMaMa2
b 2

P0

P0
*

�
k � 1

1 � kMaMa2
a2 � (k � 1)Ma1)Ma2

k � 1
b k/(/(k�1)1)
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T0*
�

(k � 1)Ma1)Ma2[2[2 � (k � 1)Ma1)Ma2]

(1(1 � kMaMa2)2

FIGURE 17–56

Summary of relations for Rayleigh

flow.



Also,

(17–66)

which simplifies to

(17–67)

The five relations in Eqs. 17–63, 17–65, and 17–67 enable us to calculate

the dimensionless pressure, temperature, density, velocity, stagnation tem-

perature, and stagnation pressure for Rayleigh flow of an ideal gas with a

specified k for any given Mach number. Representative results are given in

tabular form in Table A–34 for k � 1.4.

Choked Rayleigh Flow
It is clear from the earlier discussions that subsonic Rayleigh flow in a duct

may accelerate to sonic velocity (Ma � 1) with heating. What happens if

we continue to heat the fluid? Does the fluid continue to accelerate to super-

sonic velocities? An examination of the Rayleigh line indicates that the fluid

at the critical state of Ma � 1 cannot be accelerated to supersonic velocities

by heating. Therefore, the flow is choked. This is analogous to not being

able to accelerate a fluid to supersonic velocities in a converging nozzle by

simply extending the converging flow section. If we keep heating the fluid,

we will simply move the critical state further downstream and reduce the

flow rate since fluid density at the critical state will now be lower. There-

fore, for a given inlet state, the corresponding critical state fixes the maxi-

mum possible heat transfer for steady flow (Fig. 17–57). That is,

(17–68)

Further heat transfer causes choking and thus the inlet state to change (e.g.,

inlet velocity will decrease), and the flow no longer follows the same Rayleigh

line. Cooling the subsonic Rayleigh flow reduces the velocity, and the Mach

number approaches zero as the temperature approaches absolute zero. Note

that the stagnation temperature T0 is maximum at the critical state of Ma � 1.

In supersonic Rayleigh flow, heating decreases the flow velocity. Further

heating simply increases the temperature and moves the critical state further

downstream, resulting in a reduction in the mass flow rate of the fluid.

It may seem like supersonic Rayleigh flow can be cooled indefinitely, but it

turns out that there is a limit. Taking the limit of Eq. 17–65 as the Mach

number approaches infinity gives

(17–69)

which yields T0/T*0 � 0.49 for k � 1.4. Therefore, if the critical stagnation

temperature is 1000 K, air cannot be cooled below 490 K in Rayleigh flow.

Physically this means that the flow velocity reaches infinity by the time the

temperature reaches 490 K—a physical impossibility. When supersonic flow

cannot be sustained, the flow undergoes a normal shock wave and becomes

subsonic.

LimMaS� 
T0

T*0
� 1 �

1

k 2

qmax � h*0 � h01 � cp 1T*0 � T01 2

P0

P*0
�

k � 1

1 � kMa2
c 2 � 1k � 1 2Ma2

k � 1
d k>1k�12

P0

P*0
�

P0

P
 

P

P*
 
P*

P*0
� a1 �

k � 1

2
 Ma2 b k>1k�12 a 1 � k

1 � kMa2
b a1 �

k � 1

2
b�k>1k�12
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FIGURE 17–57

For a given inlet state, the maximum

possible heat transfer occurs when

sonic conditions are reached at the exit

state.
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EXAMPLE 17–15 Rayleigh Flow in a Tubular Combustor

A combustion chamber consists of tubular combustors of 15-cm diameter.

Compressed air enters the tubes at 550 K, 480 kPa, and 80 m/s (Fig.

17–58). Fuel with a heating value of 42,000 kJ/kg is injected into the air

and is burned with an air–fuel mass ratio of 40. Approximating combustion

as a heat transfer process to air, determine the temperature, pressure, veloc-

ity, and Mach number at the exit of the combustion chamber.

Solution Fuel is burned in a tubular combustion chamber with compressed

air. The exit temperature, pressure, velocity, and Mach number are to be

determined.

Assumptions 1 The assumptions associated with Rayleigh flow (i.e., steady

one-dimensional flow of an ideal gas with constant properties through a con-

stant cross-sectional-area duct with negligible frictional effects) are valid.

2 Combustion is complete, and it is treated as a heat transfer process, with

no change in the chemical composition of the flow. 3 The increase in mass

flow rate due to fuel injection is disregarded.

Properties We take the properties of air to be k � 1.4, cp � 1.005 kJ/kg · K,

and R � 0.287 kJ/kg · K (Table A–2a).

Analysis The inlet density and mass flow rate of air are

The mass flow rate of fuel and the rate of heat transfer are

The stagnation temperature and Mach number at the inlet are

The exit stagnation temperature is, from the energy equation q � cp(T02 � T01),

T02 � T01 �
q

cp

� 553.2 K �

1050 kJ/ kg

1.005 kJ/ kg # K
� 1598 K

 Ma1 �
V1

c1

�
80 m/s

470.1 m/s
� 0.1702

 c1 � 2kRT1 � B 11.4 2 10.287 kJ>kg # K 2 1550 K 2 a 1000 m2>s2

1 kJ>kg
b � 470.1 m>s

 T01 � T1 �
V 2

1

2cp

� 550 K �

180 m>s 2 2
2 11.005 kJ>kg # K 2  a

1 kJ>kg

1000 m2>s2
b � 553.2 K

 q �
Q
#

m
#

air

�
4515 kJ>s
4.299 kg>s � 1050 kJ>kg

 Q
#

� m
#

fuel HV � 10.1075 kg>s 2 142,000 kJ>kg 2 � 4515 kW

 m
#

fuel �
m
#

air

AF
�

4.299 kg>s
40

� 0.1075 kg>s 

 m
#

air � r1A1V1 � 13.041 kg>m3 2 3p 10.15 m 2 2>4 4 180 m>s 2 � 4.299 kg>s
 r1 �

P1

RT1

�
480 kPa

10.287 kJ>kg # K 2 1550 K 2 � 3.041 kg>m3 

Combustor
tube

P1 � 480 kPa
P2, T2, V2T1 � 550 K

V1 � 80 m/s

Q
.

FIGURE 17–58

Schematic of the combustor tube

analyzed in Example 17–15.
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Discussion Note that the temperature and velocity increase and pressure

decreases during this subsonic Rayleigh flow with heating, as expected. This

problem can also be solved using appropriate relations instead of tabulated

values, which can likewise be coded for convenient computer solutions.

17–7 ■ STEAM NOZZLES

We have seen in Chapter 3 that water vapor at moderate or high pressures

deviates considerably from ideal-gas behavior, and thus most of the rela-

tions developed in this chapter are not applicable to the flow of steam

through the nozzles or blade passages encountered in steam turbines. Given

that the steam properties such as enthalpy are functions of pressure as well

as temperature and that no simple property relations exist, an accurate analy-

sis of steam flow through the nozzles is no easy matter. Often it becomes

necessary to use steam tables, an h-s diagram, or a computer program for

the properties of steam.

A further complication in the expansion of steam through nozzles occurs

as the steam expands into the saturation region, as shown in Fig. 17–59. As

the steam expands in the nozzle, its pressure and temperature drop, and

The maximum value of stagnation temperature T*0 occurs at Ma � 1, and its

value can be determined from Table A–34 or from Eq. 17–65. At Ma1 �

0.1702 we read T0/T*0 � 0.1291. Therefore,

The stagnation temperature ratio at the exit state and the Mach number cor-

responding to it are, from Table A–34,

The Rayleigh flow relations corresponding to the inlet and exit Mach num-

bers are (Table A–34):

 Ma2 � 0.3142:É
T2

T*
� 0.4389  É

P2

P*
� 2.1086  É

V2

V*
� 0.2082

 Ma1 � 0.1702:É
T1

T*
� 0.1541  É

P1

P*
� 2.3065  É

V1

V*
� 0.0668

T02

T*0
�

1598 K

4285 K
� 0.3729 S Ma2 � 0.3142

T*0 �
T01

0.1291
�

553.2 K

0.1291
� 4285 K

Then the exit temperature, pressure, and velocity are determined to be

 
V2

V1

�
V2>V*

V1>V*
�

0.2082

0.0668
� 3.117 S  V2 � 3.117V1 � 3.117 180 m>s 2 � 249 m/s

 
P2

P1

�
P2/P*

P1/P*
�

2.1086

2.3065
� 0.9142 S  P2 � 0.9142P1 � 0.9142 1480 kPa 2 � 439 kPa

 
T2

T1

�
T2>T*

T1>T*
�

0.4389

0.1541
� 2.848 S  T2 � 2.848T1 � 2.848 1550 K 2 � 1566 K



ordinarily one would expect the steam to start condensing when it strikes

the saturation line. However, this is not always the case. Owing to the high

speeds, the residence time of the steam in the nozzle is small, and there may

not be sufficient time for the necessary heat transfer and the formation of

liquid droplets. Consequently, the condensation of the steam may be

delayed for a little while. This phenomenon is known as supersaturation,

and the steam that exists in the wet region without containing any liquid is

called supersaturated steam. Supersaturation states are nonequilibrium (or

metastable) states.

During the expansion process, the steam reaches a temperature lower than

that normally required for the condensation process to begin. Once the tem-

perature drops a sufficient amount below the saturation temperature corre-

sponding to the local pressure, groups of steam moisture droplets of

sufficient size are formed, and condensation occurs rapidly. The locus of

points where condensation takes place regardless of the initial temperature

and pressure at the nozzle entrance is called the Wilson line. The Wilson

line lies between the 4 and 5 percent moisture curves in the saturation

region on the h-s diagram for steam, and it is often approximated by the

4 percent moisture line. Therefore, steam flowing through a high-velocity

nozzle is assumed to begin condensation when the 4 percent moisture line is

crossed.

The critical-pressure ratio P*/P0 for steam depends on the nozzle inlet state

as well as on whether the steam is superheated or saturated at the nozzle inlet.

However, the ideal-gas relation for the critical-pressure ratio, Eq. 17–22, gives

reasonably good results over a wide range of inlet states. As indicated in

Table 17–2, the specific heat ratio of superheated steam is approximated as

k � 1.3. Then the critical-pressure ratio becomes

When steam enters the nozzle as a saturated vapor instead of superheated

vapor (a common occurrence in the lower stages of a steam turbine), the

critical-pressure ratio is taken to be 0.576, which corresponds to a specific

heat ratio of k � 1.14.

P*

P0

� a 2

k � 1
b k>1k�12

� 0.546
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FIGURE 17–59

The h-s diagram for the isentropic

expansion of steam in a nozzle.

EXAMPLE 17–16 Steam Flow through a 

Converging–Diverging Nozzle

Steam enters a converging–diverging nozzle at 2 MPa and 400°C with a neg-

ligible velocity and a mass flow rate of 2.5 kg/s, and it exits at a pressure of

300 kPa. The flow is isentropic between the nozzle entrance and throat, and

the overall nozzle efficiency is 93 percent. Determine (a) the throat and exit

areas and (b) the Mach number at the throat and the nozzle exit.

Solution Steam enters a converging–diverging nozzle with a low velocity.

The throat and exit areas and the Mach number are to be determined.

Assumptions 1 Flow through the nozzle is one-dimensional. 2 The flow is

isentropic between the inlet and the throat, and is adiabatic and irreversible

between the throat and the exit. 3 The inlet velocity is negligible.
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Analysis We denote the entrance, throat, and exit states by 1, t, and 2,

respectively, as shown in Fig. 17–60.

(a) Since the inlet velocity is negligible, the inlet stagnation and static states

are identical. The ratio of the exit-to-inlet stagnation pressure is

It is much smaller than the critical-pressure ratio, which is taken to be

P*/P01 � 0.546 since the steam is superheated at the nozzle inlet. There-

fore, the flow surely is supersonic at the exit. Then the velocity at the throat

is the sonic velocity, and the throat pressure is

At the inlet,

Also, at the throat,

Then the throat velocity is determined from Eq. 17–3 to be

The flow area at the throat is determined from the mass flow rate relation:

At state 2s,

The enthalpy of the steam at the actual exit state is (see Chap. 7)

Therefore,

Then the exit velocity and the exit area become

A2 �
m
#
v2

V2

�
12.5 kg>s 2 10.67723 m3>kg 2

929.8 m>s � 18.21 � 10�4 m2
� 18.21 cm2

 V2 �22 1h01 � h2 2 �B 32 13248.4 � 2816.1 2  kJ>kg 4 a1000 m2>s2

1 kJ>kg
b � 929.8 m>s

P2 � 300 kPa

 h2 � 2816.1 kJ>kg
fÉv2 � 0.67723 m3>kg

 s2 � 7.2019 kJ>kg # K

 0.93 �
3248.4 � h2

3248.4 � 2783.6
  ¡   h2 � 2816.1 kJ>kg

 hN �
h01 � h2

h01 � h2s

P2s � P2 � 300 kPa

 s2s � s1 � 7.1292 kJ>kg # K
f   h2s � 2783.6 kJ>kg

At �
m
#
vt

Vt

�
12.5 kg/s 2 10.2420 m3/kg 2

585.8 m/s
� 10.33 � 10�4 m2

� 10.33 cm2

Vt �22 1h01 � ht 2 � B 32 13248.4 � 3076.8 2  kJ/kg 4 a1000 m2>s2

1 kJ>kg
b � 585.8 m/s

Pt � 1.09 MPa

st � 7.1292 kJ>kg # K
fÉht � 3076.8 kJ>kg

vt � 0.24196 m3>kg

P1 � P01 � 2 MPa

T1 � T01 � 400°C
fÉh1 � h01 � 3248.4 kJ>kg

s1 � st � s2s � 7.1292 kJ>kg # K

Pt � 0.546P01 � 10.546 2 12 MPa 2 � 1.09 MPa

P2

P01

�
300 kPa

2000 kPa
� 0.15

s

h

1

P 2 
= 300 kPa

2
2s

t
P t

P 1 
=  

P 01 
= 2 M

Pa

T
1 

= 400°C

P
1 

= 2 MPa

V
1 

≅  0

STEAM

Throat

m = 2.5 kg/s·

h
N

 = 93%

FIGURE 17–60

Schematic and h-s diagram for

Example 17–16.
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(b) The velocity of sound and the Mach numbers at the throat and the exit

of the nozzle are determined by replacing differential quantities with

differences,

The velocity of sound at the throat is determined by evaluating the specific

volume at st � 7.1292 kJ/kg · K and at pressures of 1.115 and 1.065 MPa

(Pt 
 25 kPa):

The Mach number at the throat is determined from Eq. 17–12 to be

Thus, the flow at the throat is sonic, as expected. The slight deviation of

the Mach number from unity is due to replacing the derivatives by

differences.

The velocity of sound and the Mach number at the nozzle exit are deter-

mined by evaluating the specific volume at s2 � 7.2019 kJ/kg · K and at

pressures of 325 and 275 kPa (P2 
 25 kPa):

and

Thus the flow of steam at the nozzle exit is supersonic.

Ma �
V

c
�

929.8 m>s
515.4 m>s � 1.804

c � B
1325 � 275 2  kPa

11>0.63596 � 1>0.72245 2  kg>m3
a 1000 m2>s2

1 kPa # m3>kg
b � 515.4 m>s

Ma �
V

c
�

585.8 m>s
584.6 m>s � 1.002

c � B
11115 � 1065 2  kPa

11>0.23776 � 1>0.24633 2  kg>m3
a 1000 m2>s2

1 kPa # m3>kg
b � 584.6 m>s

c � a 0P

0r
b 1>2

s

� c ¢P

¢ 11>v 2 d
1>2

s

SUMMARY

In this chapter the effects of compressibility on gas flow are

examined. When dealing with compressible flow, it is conve-

nient to combine the enthalpy and the kinetic energy of the

fluid into a single term called stagnation (or total) enthalpy

h0, defined as

The properties of a fluid at the stagnation state are called

stagnation properties and are indicated by the subscript zero.

The stagnation temperature of an ideal gas with constant spe-

cific heats is

which represents the temperature an ideal gas would attain if

it is brought to rest adiabatically. The stagnation properties of

an ideal gas are related to the static properties of the fluid by

T0 � T �
V 2

2cp

h0 � h �
V 2

2

The speed at which an infinitesimally small pressure wave

travels through a medium is the speed of sound. For an ideal

gas it is expressed as

The Mach number is the ratio of the actual velocity of the

fluid to the speed of sound at the same state:

The flow is called sonic when Ma � 1, subsonic when Ma � 1,

supersonic when Ma � 1, hypersonic when Ma �� 1, and

transonic when Ma � 1.

Ma �
V

c

c � B a
0P

0r
b

s

� 2kRT

P0

P
� a T0

T
b k>1k�12
ÉandÉ

r0

r
� a T0

T
b 1>1k�12
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Nozzles whose flow area decreases in the flow direction

are called converging nozzles. Nozzles whose flow area first

decreases and then increases are called converging–diverging

nozzles. The location of the smallest flow area of a nozzle is

called the throat. The highest velocity to which a fluid can be

accelerated in a converging nozzle is the sonic velocity.

Accelerating a fluid to supersonic velocities is possible only

in converging–diverging nozzles. In all supersonic converging–

diverging nozzles, the flow velocity at the throat is the speed

of sound.

The ratios of the stagnation to static properties for ideal

gases with constant specific heats can be expressed in terms

of the Mach number as

and

When Ma � 1, the resulting static-to-stagnation property

ratios for the temperature, pressure, and density are called

critical ratios and are denoted by the superscript asterisk:

and

The pressure outside the exit plane of a nozzle is called the

back pressure. For all back pressures lower than P*, the pres-

 
r*

r0

� a 2

k � 1
b 1>1k�12

 

 
T*

T0

�
2

k � 1
É  

P*

P0

� a 2

k � 1
b k>1k�12

 
r0

r
� c1 � a k � 1

2
bMa2 d 1>1k�12

 
P0

P
� c1 � a k � 1

2
bMa2 d k>1k�12

 
T0

T
� 1 � a k � 1

2
bMa2 

sure at the exit plane of the converging nozzle is equal to P*,

the Mach number at the exit plane is unity, and the mass flow

rate is the maximum (or choked) flow rate.

In some range of back pressure, the fluid that achieved a

sonic velocity at the throat of a converging–diverging nozzle

and is accelerating to supersonic velocities in the diverging

section experiences a normal shock, which causes a sudden

rise in pressure and temperature and a sudden drop in veloc-

ity to subsonic levels. Flow through the shock is highly

irreversible, and thus it cannot be approximated as isen-

tropic. The properties of an ideal gas with constant specific

heats before (subscript 1) and after (subscript 2) a shock are

related by

and

These equations also hold across an oblique shock, provided

that the component of the Mach number normal to the

oblique shock is used in place of the Mach number.

Steady one-dimensional flow of an ideal gas with constant

specific heats through a constant-area duct with heat transfer

and negligible friction is referred to as Rayleigh flow. The

property relations and curves for Rayleigh flow are given in

Table A–34. Heat transfer during Rayleigh flow can be deter-

mined from

q � cp 1T02 � T01 2 � cp 1T2 � T1 2 �
V 2

2 � V 2
1

2

 
P2

P1

�
1 � kMa2

1

1 � kMa2
2

�
2kMa2

1 � k � 1

k � 1

 
T2

T1

�
2 � Ma2

1 1k � 1 2
2 � Ma2

2 1k � 1 2

 T01 � T02ÉMa2 � B
1k � 1 2Ma2

1 � 2

2kMa2
1 � k � 1
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Stagnation Properties

17–1C A high-speed aircraft is cruising in still air. How

will the temperature of air at the nose of the aircraft differ

from the temperature of air at some distance from the

aircraft?

17–2C How and why is the stagnation enthalpy h0 defined?

How does it differ from ordinary (static) enthalpy?

17–3C What is dynamic temperature?

17–4C In air-conditioning applications, the temperature of

air is measured by inserting a probe into the flow stream.

Thus, the probe actually measures the stagnation temperature.

Does this cause any significant error?

17–5 Determine the stagnation temperature and stagnation

pressure of air that is flowing at 44 kPa, 245.9 K, and 470

m/s. Answers: 355.8 K, 160.3 kPa

17–6 Air at 300 K is flowing in a duct at a velocity of (a) 1,

(b) 10, (c) 100, and (d) 1000 m/s. Determine the temperature

that a stationary probe inserted into the duct will read for

each case.

17–7 Calculate the stagnation temperature and pressure for

the following substances flowing through a duct: (a) helium at

0.25 MPa, 50°C, and 240 m/s; (b) nitrogen at 0.15 MPa, 50°C,

and 300 m/s; and (c) steam at 0.1 MPa, 350°C, and 480 m/s.

17–8 Air enters a compressor with a stagnation pressure of

100 kPa and a stagnation temperature of 27°C, and it is com-

pressed to a stagnation pressure of 900 kPa. Assuming the

compression process to be isentropic, determine the power

input to the compressor for a mass flow rate of 0.02 kg/s.

Answer: 5.27 kW

17–9E Steam flows through a device with a stagnation

pressure of 120 psia, a stagnation temperature of 700°F, and a

velocity of 900 ft/s. Assuming ideal-gas behavior, determine

the static pressure and temperature of the steam at this state.

17–10 Products of combustion enter a gas turbine with a

stagnation pressure of 1.0 MPa and a stagnation temperature

of 750°C, and they expand to a stagnation pressure of 100

kPa. Taking k � 1.33 and R � 0.287 kJ/kg · K for the prod-

ucts of combustion, and assuming the expansion process to

PROBLEMS*

be isentropic, determine the power output of the turbine per

unit mass flow.

17–11 Air flows through a device such that the stagnation

pressure is 0.6 MPa, the stagnation temperature is 400°C, and

the velocity is 570 m/s. Determine the static pressure and tem-

perature of the air at this state. Answers: 518.6 K, 0.23 MPa

Speed of Sound and Mach Number

17–12C What is sound? How is it generated? How does it

travel? Can sound waves travel in a vacuum?

17–13C Is it realistic to assume that the propagation of

sound waves is an isentropic process? Explain.

17–14C Is the sonic velocity in a specified medium a fixed

quantity, or does it change as the properties of the medium

change? Explain.

17–15C In which medium does a sound wave travel faster:

in cool air or in warm air?

17–16C In which medium will sound travel fastest for a

given temperature: air, helium, or argon?

17–17C In which medium does a sound wave travel faster:

in air at 20°C and 1 atm or in air at 20°C and 5 atm?

17–18C Does the Mach number of a gas flowing at a con-

stant velocity remain constant? Explain.

17–19 Determine the speed of sound in air at (a) 300 K and

(b) 1000 K. Also determine the Mach number of an aircraft

moving in air at a velocity of 280 m/s for both cases.

17–20 Carbon dioxide enters an adiabatic nozzle at 1200 K

with a velocity of 50 m/s and leaves at 400 K. Assuming con-

stant specific heats at room temperature, determine the Mach

number (a) at the inlet and (b) at the exit of the nozzle.

Assess the accuracy of the constant specific heat assumption.

Answers: (a) 0.0925, (b) 3.73

17–21 Nitrogen enters a steady-flow heat exchanger at 150

kPa, 10°C, and 100 m/s, and it receives heat in the amount of

120 kJ/kg as it flows through it. Nitrogen leaves the heat

exchanger at 100 kPa with a velocity of 200 m/s. Determine

the Mach number of the nitrogen at the inlet and the exit of

the heat exchanger.

17–22 Assuming ideal-gas behavior, determine the speed of

sound in refrigerant-134a at 0.1 MPa and 60°C.

17–23 The Airbus A-340 passenger plane has a maximum

takeoff weight of about 260,000 kg, a length of 64 m, a wing

span of 60 m, a maximum cruising speed of 945 km/h, a

seating capacity of 271 passengers, maximum cruising alti-

tude of 14,000 m, and a maximum range of 12,000 km. The

air temperature at the crusing altitude is about �60°C. Deter-

mine the Mach number of this plane for the stated limiting

conditions.

*Problems designated by a “C” are concept questions, and students

are encouraged to answer them all. Problems designated by an “E”

are in English units, and the SI users can ignore them. Problems

with a CD-EES icon are solved using EES, and complete solutions

together with parametric studies are included on the enclosed DVD.

Problems with a computer-EES icon are comprehensive in nature,

and are intended to be solved with a computer, preferably using the

EES software that accompanies this text.
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17–24E Steam flows through a device with a pressure of

120 psia, a temperature of 700°F, and a velocity of 900 ft/s.

Determine the Mach number of the steam at this state by

assuming ideal-gas behavior with k � 1.3. Answer: 0.441

17–25E Reconsider Prob. 17–24E. Using EES (or

other) software, compare the Mach number of

steam flow over the temperature range 350 to 700°F. Plot the

Mach number as a function of temperature.

17–26 The isentropic process for an ideal gas is expressed

as Pv
k � constant. Using this process equation and the defi-

nition of the speed of sound (Eq. 17–9), obtain the expression

for the speed of sound for an ideal gas (Eq. 17–11).

17–27 Air expands isentropically from 1.5 MPa and 60°C

to 0.4 MPa. Calculate the ratio of the initial to final speed of

sound. Answer: 1.21

17–28 Repeat Prob. 17–27 for helium gas.

17–29E Air expands isentropically from 170 psia and

200°F to 60 psia. Calculate the ratio of the initial to final

speed of sound. Answer: 1.16

One-Dimensional Isentropic Flow

17–30C Consider a converging nozzle with sonic velocity

at the exit plane. Now the nozzle exit area is reduced while

the nozzle inlet conditions are maintained constant. What will

happen to (a) the exit velocity and (b) the mass flow rate

through the nozzle?

17–31C A gas initially at a supersonic velocity enters an

adiabatic converging duct. Discuss how this affects (a) the

velocity, (b) the temperature, (c) the pressure, and (d) the

density of the fluid.

17–32C A gas initially at a supersonic velocity enters an

adiabatic diverging duct. Discuss how this affects (a) the

velocity, (b) the temperature, (c) the pressure, and (d) the

density of the fluid.

17–33C A gas initially at a supersonic velocity enters an

adiabatic converging duct. Discuss how this affects (a) the

velocity, (b) the temperature, (c) the pressure, and (d) the

density of the fluid.

17–34C A gas initially at a subsonic velocity enters an adi-

abatic diverging duct. Discuss how this affects (a) the veloc-

ity, (b) the temperature, (c) the pressure, and (d) the density

of the fluid.

17–35C A gas at a specified stagnation temperature and

pressure is accelerated to Ma � 2 in a converging–diverging

nozzle and to Ma � 3 in another nozzle. What can you say

about the pressures at the throats of these two nozzles?

17–36C Is it possible to accelerate a gas to a supersonic

velocity in a converging nozzle?

17–37 Air enters a converging–diverging nozzle at a pres-

sure of 1.2 MPa with negligible velocity. What is the lowest

pressure that can be obtained at the throat of the nozzle?

Answer: 634 kPa

17–38 Helium enters a converging–diverging nozzle at 0.7

MPa, 800 K, and 100 m/s. What are the lowest temperature

and pressure that can be obtained at the throat of the nozzle?

17–39 Calculate the critical temperature, pressure, and den-

sity of (a) air at 200 kPa, 100°C, and 250 m/s, and (b) helium

at 200 kPa, 40°C, and 300 m/s.

17–40 Quiescent carbon dioxide at 600 kPa and 400 K is

accelerated isentropically to a Mach number of 0.5. Deter-

mine the temperature and pressure of the carbon dioxide after

acceleration. Answers: 388 K, 514 kPa

17–41 Air at 200 kPa, 100°C, and Mach number Ma � 0.8

flows through a duct. Find the velocity and the stagnation

pressure, temperature, and density of the air.

17–42 Reconsider Prob. 17–41. Using EES (or other)

software, study the effect of Mach numbers in

the range 0.1 to 2 on the velocity, stagnation pressure, tem-

perature, and density of air. Plot each parameter as a function

of the Mach number.

17–43E Air at 30 psia, 212°F, and Mach number Ma � 0.8

flows through a duct. Calculate the velocity and the stagna-

tion pressure, temperature, and density of air.

Answers: 1016 ft/s, 45.7 psia, 758 R, 0.163 lbm/ft3

17–44 An aircraft is designed to cruise at Mach number

Ma � 1.2 at 8000 m where the atmospheric temperature is

236.15 K. Determine the stagnation temperature on the lead-

ing edge of the wing.

Isentropic Flow through Nozzles

17–45C Consider subsonic flow in a converging nozzle

with fixed inlet conditions. What is the effect of dropping the

back pressure to the critical pressure on (a) the exit velocity,

(b) the exit pressure, and (c) the mass flow rate through the

nozzle?

17–46C Consider subsonic flow in a converging nozzle

with specified conditions at the nozzle inlet and critical pres-

sure at the nozzle exit. What is the effect of dropping the

back pressure well below the critical pressure on (a) the exit

velocity, (b) the exit pressure, and (c) the mass flow rate

through the nozzle?

17–47C Consider a converging nozzle and a converging–

diverging nozzle having the same throat areas. For the same

inlet conditions, how would you compare the mass flow rates

through these two nozzles?

17–48C Consider gas flow through a converging nozzle

with specified inlet conditions. We know that the highest

velocity the fluid can have at the nozzle exit is the sonic

velocity, at which point the mass flow rate through the nozzle

is a maximum. If it were possible to achieve hypersonic



velocities at the nozzle exit, how would it affect the mass

flow rate through the nozzle?

17–49C How does the parameter Ma* differ from the Mach

number Ma?

17–50C What would happen if we attempted to decelerate

a supersonic fluid with a diverging diffuser?

17–51C What would happen if we tried to further acceler-

ate a supersonic fluid with a diverging diffuser?

17–52C Consider the isentropic flow of a fluid through a

converging–diverging nozzle with a subsonic velocity at the

throat. How does the diverging section affect (a) the velocity,

(b) the pressure, and (c) the mass flow rate of the fluid?

17–53C Is it possible to accelerate a fluid to supersonic

velocities with a velocity other than the sonic velocity at the

throat? Explain.

17–54 Explain why the maximum flow rate per unit area

for a given gas depends only on P0/ . For an ideal gas

with k � 1.4 and R � 0.287 kJ/kg · K, find the constant a

such that m
.
/A* � aP0/ .

17–55 For an ideal gas obtain an expression for the ratio of

the velocity of sound where Ma � 1 to the speed of sound

based on the stagnation temperature, c*/c0.

17–56 An ideal gas flows through a passage that first con-

verges and then diverges during an adiabatic, reversible,

steady-flow process. For subsonic flow at the inlet, sketch the

variation of pressure, velocity, and Mach number along the

length of the nozzle when the Mach number at the minimum

flow area is equal to unity.

17–57 Repeat Prob. 17–56 for supersonic flow at the inlet.

17–58 Air enters a nozzle at 0.2 MPa, 350 K, and a veloc-

ity of 150 m/s. Assuming isentropic flow, determine the pres-

sure and temperature of air at a location where the air

velocity equals the speed of sound. What is the ratio of the

area at this location to the entrance area?

Answers: 0.118 MPa, 301 K, 0.629

17–59 Repeat Prob. 17–58 assuming the entrance velocity

is negligible.

17–60E Air enters a nozzle at 30 psia, 630 R, and a veloc-

ity of 450 ft/s. Assuming isentropic flow, determine the pres-

sure and temperature of air at a location where the air

velocity equals the speed of sound. What is the ratio of the

area at this location to the entrance area?

Answers: 17.4 psia, 539 R, 0.574

17–61 Air enters a converging–diverging nozzle at 0.5 MPa

with a negligible velocity. Assuming the flow to be isen-

tropic, determine the back pressure that will result in an exit

Mach number of 1.8. Answer: 0.087 MPa

17–62 Nitrogen enters a converging–diverging nozzle at 700

kPa and 450 K with a negligible velocity. Determine the criti-

cal velocity, pressure, temperature, and density in the nozzle.

1T0

1T0
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17–63 An ideal gas with k � 1.4 is flowing through a noz-

zle such that the Mach number is 2.4 where the flow area is

25 cm2. Assuming the flow to be isentropic, determine the

flow area at the location where the Mach number is 1.2.

17–64 Repeat Prob. 17–63 for an ideal gas with k � 1.33.

17–65 Air at 900 kPa and 400 K enters a converging

nozzle with a negligible velocity. The throat area

of the nozzle is 10 cm2. Assuming isentropic flow, calculate

and plot the exit pressure, the exit velocity, and the mass flow

rate versus the back pressure Pb for 0.9 � Pb � 0.1 MPa.

17–66 Reconsider Prob. 17–65. Using EES (or other)

software, solve the problem for the inlet condi-

tions of 1 MPa and 1000 K.

17–67E Air enters a converging–diverging nozzle of a

supersonic wind tunnel at 150 psia and 100°F with a low

velocity. The flow area of the test section is equal to the exit

area of the nozzle, which is 5 ft2. Calculate the pressure, tem-

perature, velocity, and mass flow rate in the test section for a

Mach number Ma � 2. Explain why the air must be very dry

for this application. Answers: 19.1 psia, 311 R, 1729 ft/s,

1435 lbm/s

Shock Waves and Expansion Waves

17–68C Can a shock wave develop in the converging sec-

tion of a converging–diverging nozzle? Explain.

17–69C What do the states on the Fanno line and the

Rayleigh line represent? What do the intersection points of

these two curves represent?

17–70C Can the Mach number of a fluid be greater than 1

after a shock wave? Explain.

17–71C How does the normal shock affect (a) the fluid

velocity, (b) the static temperature, (c) the stagnation temper-

ature, (d) the static pressure, and (e) the stagnation pressure?

17–72C How do oblique shocks occur? How do oblique

shocks differ from normal shocks?

17–73C For an oblique shock to occur, does the upstream

flow have to be supersonic? Does the flow downstream of an

oblique shock have to be subsonic?

17–74C It is claimed that an oblique shock can be analyzed

like a normal shock provided that the normal component of

velocity (normal to the shock surface) is used in the analysis.

Do you agree with this claim?

17–75C Consider supersonic airflow approaching the nose

of a two-dimensional wedge and experiencing an oblique

shock. Under what conditions does an oblique shock detach

from the nose of the wedge and form a bow wave? What is

the numerical value of the shock angle of the detached shock

at the nose?

17–76C Consider supersonic flow impinging on the rounded

nose of an aircraft. Will the oblique shock that forms in front

of the nose be an attached or detached shock? Explain.
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17–77C Are the isentropic relations of ideal gases applica-

ble for flows across (a) normal shock waves, (b) oblique

shock waves, and (c) Prandtl–Meyer expansion waves?

17–78 For an ideal gas flowing through a normal shock,

develop a relation for V2/V1 in terms of k, Ma1, and Ma2.

17–79 Air enters a converging–diverging nozzle of a super-

sonic wind tunnel at 1.5 MPa and 350 K with a low velocity.

If a normal shock wave occurs at the exit plane of the nozzle

at Ma � 2, determine the pressure, temperature, Mach num-

ber, velocity, and stagnation pressure after the shock wave.

Answers: 0.863 MPa, 328 K, 0.577, 210 m/s, 1.081 MPa

17–80 Air enters a converging–diverging nozzle with low

velocity at 2.0 MPa and 100°C. If the exit area of the nozzle

is 3.5 times the throat area, what must the back pressure be to

produce a normal shock at the exit plane of the nozzle?

Answer: 0.661 MPa

17–81 What must the back pressure be in Prob. 17–80 for a

normal shock to occur at a location where the cross-sectional

area is twice the throat area?

17–82 Air flowing steadily in a nozzle experiences a normal

shock at a Mach number of Ma � 2.5. If the pressure and

temperature of air are 61.64 kPa and 262.15 K, respectively,

upstream of the shock, calculate the pressure, temperature,

velocity, Mach number, and stagnation pressure downstream

of the shock. Compare these results to those for helium under-

going a normal shock under the same conditions.

17–83 Calculate the entropy change of air across the nor-

mal shock wave in Prob. 17–82.

17–84E Air flowing steadily in a nozzle experiences a

normal shock at a Mach number of Ma �

2.5. If the pressure and temperature of air are 10.0 psia and

440.5 R, respectively, upstream of the shock, calculate the

pressure, temperature, velocity, Mach number, and stagnation

pressure downstream of the shock. Compare these results to

those for helium undergoing a normal shock under the same

conditions.

17–85E Reconsider Prob. 17–84E. Using EES (or

other) software, study the effects of both air

and helium flowing steadily in a nozzle when there is a nor-

mal shock at a Mach number in the range 2 � Ma1 � 3.5. In

addition to the required information, calculate the entropy

change of the air and helium across the normal shock. Tabu-

late the results in a parametric table.

17–86 Air enters a normal shock at 22.6 kPa, 217 K, and

680 m/s. Calculate the stagnation pressure and Mach number

upstream of the shock, as well as pressure, temperature,

velocity, Mach number, and stagnation pressure downstream

of the shock.

17–87 Calculate the entropy change of air across the nor-

mal shock wave in Prob. 17–86. Answer: 0.155 kJ/kg · K

17–88 Using EES (or other) software, calculate and

plot the entropy change of air across the nor-

mal shock for upstream Mach numbers between 0.5 and 1.5

in increments of 0.1. Explain why normal shock waves can

occur only for upstream Mach numbers greater than Ma � 1.

17–89 Consider supersonic airflow approaching the nose of

a two-dimensional wedge at a Mach number of 5. Using Fig.

17–41, determine the minimum shock angle and the maxi-

mum deflection angle a straight oblique shock can have.

17–90 Air flowing at 60 kPa, 240 K, and a Mach number of

3.4 impinges on a two-dimensional wedge of half-angle 12°.

Determine the two possible oblique shock angles, bweak and

bstrong, that could be formed by this wedge. For each case,

calculate the pressure, temperature, and Mach number down-

stream of the oblique shock.

17–91 Consider the supersonic flow of air at upstream con-

ditions of 70 kPa and 260 K and a Mach number of 2.4 over

a two-dimensional wedge of half-angle 10°. If the axis of the

wedge is tilted 25° with respect to the upstream airflow,

determine the downstream Mach number, pressure, and tem-

perature above the wedge. Answers: 3.105, 23.8 kPa, 191 K

Ma1 � 2.4

Ma2

25°
10°

FIGURE P17–91

17–92 Reconsider Prob. 17–91. Determine the downstream

Mach number, pressure, and temperature below the wedge for

a strong oblique shock for an upstream Mach number of 5.

17–93E Air at 8 psia, 20°F, and a Mach number of 2.0 is

forced to turn upward by a ramp that makes an 8° angle off

the flow direction. As a result, a weak oblique shock forms.

Determine the wave angle, Mach number, pressure, and tem-

perature after the shock.

17–94 Air flowing at P1 � 40 kPa, T1 � 280 K, and Ma1 �

3.6 is forced to undergo an expansion turn of 15°. Determine

the Mach number, pressure, and temperature of air after the

expansion. Answers: 4.81, 8.31 kPa, 179 K

17–95E Air flowing at P1 � 6 psia, T1 � 480 R, and

Ma1 � 2.0 is forced to undergo a compression turn of 15°.

Determine the Mach number, pressure, and temperature of air

after the compression.

Duct Flow with Heat Transfer and Negligible Friction
(Rayleigh Flow)

17–96C What is the characteristic aspect of Rayleigh flow?

What are the main assumptions associated with Rayleigh

flow?



17–97C On a T-s diagram of Rayleigh flow, what do the

points on the Rayleigh line represent?

17–98C What is the effect of heat gain and heat loss on the

entropy of the fluid during Rayleigh flow?

17–99C Consider subsonic Rayleigh flow of air with a

Mach number of 0.92. Heat is now transferred to the fluid

and the Mach number increases to 0.95. Will the temperature

T of the fluid increase, decrease, or remain constant during

this process? How about the stagnation temperature T0?

17–100C What is the effect of heating the fluid on the flow

velocity in subsonic Rayleigh flow? Answer the same ques-

tions for supersonic Rayleigh flow.

17–101C Consider subsonic Rayleigh flow that is acceler-

ated to sonic velocity (Ma � 1) at the duct exit by heating. If

the fluid continues to be heated, will the flow at duct exit be

supersonic, subsonic, or remain sonic?

17–102 Consider a 12-cm-diameter tubular combustion

chamber. Air enters the tube at 500 K, 400 kPa, and 70 m/s.

Fuel with a heating value of 39,000 kJ/kg is burned by spray-

ing it into the air. If the exit Mach number is 0.8, determine

the rate at which the fuel is burned and the exit temperature.

Assume complete combustion and disregard the increase in

the mass flow rate due to the fuel mass.
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17–103 Air enters a rectangular duct at T1 � 300 K, P1 �

420 kPa, and Ma1 � 2. Heat is transferred to the air in the

amount of 55 kJ/kg as it flows through the duct. Disregarding

frictional losses, determine the temperature and Mach num-

ber at the duct exit. Answers: 386 K, 1.64

Combustor
tube

Fuel

P1 � 400 kPa

T1 � 500 K

V1 � 70 m/s

Ma2 � 0.8

FIGURE P17–102

Air

55 kJ/kg

P1 � 420 kPa

T1 � 300 K

Ma1 � 2

FIGURE P17–103

flow is observed to be choked, and the velocity and the static

pressure are measured to be 620 m/s and 270 kPa. Disregard-

ing frictional losses, determine the velocity, static tempera-

ture, and static pressure at the duct inlet.

17–106E Air flows with negligible friction through a 4-in-

diameter duct at a rate of 5 lbm/s. The temperature and pres-

sure at the inlet are T1 � 800 R and P1 � 30 psia, and the

Mach number at the exit is Ma2 � 1. Determine the rate of

heat transfer and the pressure drop for this section of the

duct.

17–107 Air enters a frictionless duct with V1 � 70

m/s, T1 � 600 K, and P1 � 350 kPa. Letting

the exit temperature T2 vary from 600 to 5000 K, evaluate the

entropy change at intervals of 200 K, and plot the Rayleigh

line on a T-s diagram.

17–108E Air is heated as it flows through a 4 in � 4 in

square duct with negligible friction. At the inlet, air is at T1 �

700 R, P1 � 80 psia, and V1 � 260 ft/s. Determine the rate at

which heat must be transferred to the air to choke the flow at

the duct exit, and the entropy change of air during this

process.

17–109 Compressed air from the compressor of a gas tur-

bine enters the combustion chamber at T1 � 550 K, P1 � 600

kPa, and Ma1 � 0.2 at a rate of 0.3 kg/s. Via combustion,

heat is transferred to the air at a rate of 200 kJ/s as it flows

through the duct with negligible friction. Determine the Mach

number at the duct exit and the drop in stagnation pressure

P01 � P02 during this process. Answers: 0.319, 21.8 kPa

17–110 Repeat Prob. 17–109 for a heat transfer rate of 300

kJ/s.

17–111 Argon gas enters a constant cross-sectional-area

duct at Ma1 � 0.2, P1 � 320 kPa, and T1 � 400 K at a rate

of 0.8 kg/s. Disregarding frictional losses, determine the

highest rate of heat transfer to the argon without reducing the

mass flow rate.

17–112 Consider supersonic flow of air through a 6-cm-

diameter duct with negligible friction. Air enters the duct at

Ma1 � 1.8, P01 � 210 kPa, and T01 � 600 K, and it is decel-

erated by heating. Determine the highest temperature that air

can be heated by heat addition while the mass flow rate

remains constant.

Steam Nozzles

17–113C What is supersaturation? Under what conditions

does it occur?

17–114 Steam enters a converging nozzle at 3.0 MPa and

500°C with a negligible velocity, and it exits at 1.8 MPa. For

a nozzle exit area of 32 cm2, determine the exit velocity,

mass flow rate, and exit Mach number if the nozzle (a) is

isentropic and (b) has an efficiency of 90 percent. Answers:

(a) 580 m/s, 10.7 kg/s, 0.918, (b) 551 m/s, 10.1 kg/s, 0.865

17–104 Repeat Prob. 17–103 assuming air is cooled in the

amount of 55 kJ/kg.

17–105 Air is heated as it flows subsonically through a

duct. When the amount of heat transfer reaches 60 kJ/kg, the
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17–115E Steam enters a converging nozzle at 450 psia and

900°F with a negligible velocity, and it exits at 275 psia. For

a nozzle exit area of 3.75 in2, determine the exit velocity,

mass flow rate, and exit Mach number if the nozzle (a) is

isentropic and (b) has an efficiency of 90 percent. Answers:

(a) 1847 ft/s, 18.7 lbm/s, 0.900, (b) 1752 ft/s, 17.5 lbm/s, 0.849

17–116 Steam enters a converging–diverging nozzle at 1 MPa

and 500°C with a negligible velocity at a mass flow rate of 2.5

kg/s, and it exits at a pressure of 200 kPa. Assuming the flow

through the nozzle to be isentropic, determine the exit area and

the exit Mach number. Answers: 31.5 cm2, 1.738

17–117 Repeat Prob. 17–116 for a nozzle efficiency of 95

percent.

Review Problems

17–118 Air in an automobile tire is maintained at a pres-

sure of 220 kPa (gauge) in an environment where the atmo-

spheric pressure is 94 kPa. The air in the tire is at the

ambient temperature of 25°C. Now a 4-mm-diameter leak

develops in the tire as a result of an accident. Assuming isen-

tropic flow, determine the initial mass flow rate of air through

the leak. Answer: 0.554 kg/min

17–119 The thrust developed by the engine of a Boeing 777

is about 380 kN. Assuming choked flow in the nozzles, deter-

mine the mass flow rate of air through the nozzle. Take the

ambient conditions to be 265 K and 85 kPa.

17–120 A stationary temperature probe inserted into a duct

where air is flowing at 250 m/s reads 85°C. What is the

actual temperature of air? Answer: 53.9°C

17–121 Nitrogen enters a steady-flow heat exchanger at

150 kPa, 10°C, and 100 m/s, and it receives heat in the

amount of 125 kJ/kg as it flows through it. The nitrogen

leaves the heat exchanger at 100 kPa with a velocity of 180

m/s. Determine the stagnation pressure and temperature of

the nitrogen at the inlet and exit states.

17–122 Derive an expression for the speed of sound based

on van der Waals’ equation of state P � RT(v � b) � a/v2.

Using this relation, determine the speed of sound in carbon

dioxide at 50°C and 200 kPa, and compare your result to that

obtained by assuming ideal-gas behavior. The van der Waals

constants for carbon dioxide are a � 364.3 kPa · m6/kmol2

and b � 0.0427 m3/kmol.

17–123 Obtain Eq. 17–10 by starting with Eq. 17–9 and

using the cyclic rule and the thermodynamic property relations

17–124 For ideal gases undergoing isentropic flows, obtain

expressions for P/P*, T/T*, and r/r* as functions of k and Ma.

17–125 Using Eqs. 17–4, 17–13, and 17–14, verify that for

the steady flow of ideal gases dT0 /T � dA/A � (1 � Ma2)

cp

T
� a 0s

0T
b

P

  and  
c

v

T
� a 0s

0T
b

v

.

dV/V. Explain the effect of heating and area changes on the

velocity of an ideal gas in steady flow for (a) subsonic flow

and (b) supersonic flow.

17–126 A subsonic airplane is flying at a 3000-m altitude

where the atmospheric conditions are 70.109 kPa and 268.65 K.

A Pitot static probe measures the difference between the static

and stagnation pressures to be 35 kPa. Calculate the speed of

the airplane and the flight Mach number. Answers: 257 m/s,

0.783

17–127 Plot the mass flow parameter m
.

/(AP0) versus

the Mach number for k � 1.2, 1.4, and 1.6 in the range of 0 �

Ma � 1.

17–128 Helium enters a nozzle at 0.8 MPa, 500 K, and

a velocity of 120 m/s. Assuming isentropic flow, deter-

mine the pressure and temperature of helium at a location

where the velocity equals the speed of sound. What is the

ratio of the area at this location to the entrance area?

17–129 Repeat Prob. 17–128 assuming the entrance veloc-

ity is negligible.

17–130 Air at 0.9 MPa and 400 K enters a converging

nozzle with a velocity of 180 m/s. The throat

area is 10 cm2. Assuming isentropic flow, calculate and plot

the mass flow rate through the nozzle, the exit velocity, the

exit Mach number, and the exit pressure–stagnation pressure

ratio versus the back pressure–stagnation pressure ratio for a

back pressure range of 0.9 � Pb � 0.1 MPa.

17–131 Steam at 6.0 MPa and 700 K enters a con-

verging nozzle with a negligible velocity. The

nozzle throat area is 8 cm2. Assuming isentropic flow, plot

the exit pressure, the exit velocity, and the mass flow rate

through the nozzle versus the back pressure Pb for 6.0 � Pb

� 3.0 MPa. Treat the steam as an ideal gas with k � 1.3, cp

� 1.872 kJ/kg · K, and R � 0.462 kJ/kg · K.

17–132 Find the expression for the ratio of the stagnation

pressure after a shock wave to the static pressure before the

shock wave as a function of k and the Mach number upstream

of the shock wave Ma1.

17–133 Nitrogen enters a converging–diverging nozzle at 700

kPa and 300 K with a negligible velocity, and it experiences a

normal shock at a location where the Mach number is Ma �

3.0. Calculate the pressure, temperature, velocity, Mach num-

ber, and stagnation pressure downstream of the shock. Com-

pare these results to those of air undergoing a normal shock

at the same conditions.

17–134 An aircraft flies with a Mach number Ma1 � 0.8 at

an altitude of 7000 m where the pressure is 41.1 kPa and the

temperature is 242.7 K. The diffuser at the engine inlet has

an exit Mach number of Ma2 � 0.3. For a mass flow rate of

65 kg/s, determine the static pressure rise across the diffuser

and the exit area.

1RT0



17–147 Repeat Prob. 17–146 for helium.

17–148 Air is accelerated as it is heated in a duct with neg-

ligible friction. Air enters at V1 � 100 m/s, T1 � 400 K, and

P1 � 35 kPa and then exits at a Mach number of Ma2 � 0.8.

Determine the heat transfer to the air, in kJ/kg. Also deter-

mine the maximum amount of heat transfer without reducing

the mass flow rate of air.

17–149 Air at sonic conditions and static temperature and

pressure of 500 K and 420 kPa, respectively, is to be acceler-

ated to a Mach number of 1.6 by cooling it as it flows through

a channel with constant cross-sectional area. Disregarding

frictional effects, determine the required heat transfer from the

air, in kJ/kg. Answer: 69.8 kJ/kg

17–150 Saturated steam enters a converging–diverging noz-

zle at 3.0 MPa, 5 percent moisture, and negligible velocity,

and it exits at 1.2 MPa. For a nozzle exit area of 16 cm2,

determine the throat area, exit velocity, mass flow rate, and

exit Mach number if the nozzle (a) is isentropic and (b) has

an efficiency of 90 percent.

Fundamentals of Engineering (FE) Exam Problems

17–151 An aircraft is cruising in still air at 5°C at a velocity

of 400 m/s. The air temperature at the nose of the aircraft

where stagnation occurs is

(a) 5°C (b) 25°C (c) 55°C (d) 80°C (e) 85°C

17–152 Air is flowing in a wind tunnel at 15°C, 80 kPa,

and 200 m/s. The stagnation pressure at the probe inserted

into the flow section is

(a) 82 kPa (b) 91 kPa (c) 96 kPa

(d) 101 kPa (e) 114 kPa

17–153 An aircraft is reported to be cruising in still air at

�20°C and 40 kPa at a Mach number of 0.86. The velocity

of the aircraft is

(a) 91 m/s (b) 220 m/s (c) 186 m/s

(d) 280 m/s (e) 378 m/s

17–135 Helium expands in a nozzle from 1 MPa, 500 K,

and negligible velocity to 0.1 MPa. Calculate the throat and

exit areas for a mass flow rate of 0.25 kg/s, assuming the

nozzle is isentropic. Why must this nozzle be converging–

diverging? Answers: 3.51 cm2, 5.84 cm2

17–136E Helium expands in a nozzle from 150 psia, 900

R, and negligible velocity to 15 psia. Calculate the throat and

exit areas for a mass flow rate of 0.2 lbm/s, assuming the

nozzle is isentropic. Why must this nozzle be converging–

diverging?

17–137 Using the EES software and the relations in

Table A–32, calculate the one-dimensional

compressible flow functions for an ideal gas with k � 1.667,

and present your results by duplicating Table A–32.

17–138 Using the EES software and the relations in

Table A–33, calculate the one-dimensional

normal shock functions for an ideal gas with k � 1.667, and

present your results by duplicating Table A–33.

17–139 Consider an equimolar mixture of oxygen and

nitrogen. Determine the critical temperature, pressure, and

density for stagnation temperature and pressure of 800 K

and 500 kPa.

17–140 Using EES (or other) software, determine the

shape of a converging–diverging nozzle for air

for a mass flow rate of 3 kg/s and inlet stagnation conditions

of 1400 kPa and 200°C. Assume the flow is isentropic.

Repeat the calculations for 50-kPa increments of pressure

drops to an exit pressure of 100 kPa. Plot the nozzle to scale.

Also, calculate and plot the Mach number along the nozzle.

17–141 Using EES (or other) software and the rela-

tions given in Table A–32, calculate the one-

dimensional isentropic compressible-flow functions by

varying the upstream Mach number from 1 to 10 in incre-

ments of 0.5 for air with k � 1.4.

17–142 Repeat Prob. 17–141 for methane with k �

1.3.

17–143 Using EES (or other) software and the rela-

tions given in Table A–33, generate the one-

dimensional normal shock functions by varying the upstream

Mach number from 1 to 10 in increments of 0.5 for air with 

k � 1.4.

17–144 Repeat Prob. 17–143 for methane with k �

1.3.

17–145 Air is cooled as it flows through a 20-cm-diameter

duct. The inlet conditions are Ma1 � 1.2, T01 � 350 K, and P01

� 240 kPa and the exit Mach number is Ma2 � 2.0. Disregard-

ing frictional effects, determine the rate of cooling of air.

17–146 Air is heated as it flows subsonically through a

10 cm � 10 cm square duct. The properties of air at the inlet

are maintained at Ma1 � 0.4, P1 � 400 kPa, and T1 � 360 K
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at all times. Disregarding frictional losses, determine the

highest rate of heat transfer to the air in the duct without

affecting the inlet conditions. Answer: 1958 kW

P1 � 400 kPa

T1 � 360 K

Ma1 � 0.4

Qmax

FIGURE P17–146
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(d) There will be no flow through the nozzle if the back

pressure equals the stagnation pressure.

(e) The fluid velocity decreases, the entropy increases, and

stagnation enthalpy remains constant during flow

through a normal shock.

17–160 Combustion gases with k � 1.33 enter a converging

nozzle at stagnation temperature and pressure of 400°C and

800 kPa, and are discharged into the atmospheric air at 20°C

and 100 kPa. The lowest pressure that will occur within the

nozzle is

(a) 26 kPa (b) 100 kPa (c) 321 kPa

(d) 432 kPa (e) 272 kPa

Design and Essay Problems

17–161 Find out if there is a supersonic wind tunnel on

your campus. If there is, obtain the dimensions of the wind

tunnel and the temperatures and pressures as well as the

Mach number at several locations during operation. For what

typical experiments is the wind tunnel used?

17–162 Assuming you have a thermometer and a device to

measure the speed of sound in a gas, explain how you can

determine the mole fraction of helium in a mixture of helium

gas and air.

17–163 Design a 1-m-long cylindrical wind tunnel whose

diameter is 25 cm operating at a Mach number of 1.8.

Atmospheric air enters the wind tunnel through a converging–

diverging nozzle where it is accelerated to supersonic veloci-

ties. Air leaves the tunnel through a converging–diverging 

diffuser where it is decelerated to a very low velocity before

entering the fan section. Disregard any irreversibilities. Specify

the temperatures and pressures at several locations as well as

the mass flow rate of air at steady-flow conditions. Why is it

often necessary to dehumidify the air before it enters the wind

tunnel?

17–154 Air is flowing in a wind tunnel at 12°C and 66 kPa

at a velocity of 230 m/s. The Mach number of the flow is

(a) 0.54 m/s (b) 0.87 m/s (c) 3.3 m/s

(d) 0.36 m/s (e) 0.68 m/s

17–155 Consider a converging nozzle with a low velocity at

the inlet and sonic velocity at the exit plane. Now the nozzle

exit diameter is reduced by half while the nozzle inlet tem-

perature and pressure are maintained the same. The nozzle

exit velocity will

(a) remain the same (b) double (c) quadruple

(d) go down by half (e) go down to one-fourth

17–156 Air is approaching a converging–diverging nozzle

with a low velocity at 20°C and 300 kPa, and it leaves the

nozzle at a supersonic velocity. The velocity of air at the

throat of the nozzle is

(a) 290 m/s (b) 98 m/s (c) 313 m/s

(d) 343 m/s (e) 412 m/s

17–157 Argon gas is approaching a converging–diverging

nozzle with a low velocity at 20°C and 120 kPa, and it leaves

the nozzle at a supersonic velocity. If the cross-sectional area

of the throat is 0.015 m2, the mass flow rate of argon through

the nozzle is

(a) 0.41 kg/s (b) 3.4 kg/s (c) 5.3 kg/s

(d) 17 kg/s (e) 22 kg/s

17–158 Carbon dioxide enters a converging–diverging noz-

zle at 60 m/s, 310°C, and 300 kPa, and it leaves the nozzle at

a supersonic velocity. The velocity of carbon dioxide at the

throat of the nozzle is

(a) 125 m/s (b) 225 m/s (c) 312 m/s

(d) 353 m/s (e) 377 m/s

17–159 Consider gas flow through a converging–diverging

nozzle. Of the five following statements, select the one that is

incorrect:

(a) The fluid velocity at the throat can never exceed the

speed of sound.

(b) If the fluid velocity at the throat is below the speed of

sound, the diversion section will act like a diffuser.

(c) If the fluid enters the diverging section with a Mach

number greater than one, the flow at the nozzle exit will

be supersonic.

P0
Ma � 1.8 D � 25 cm

T0

FIGURE P17–163
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