C o n t e n t s

Preface xviii Nomenclature xxvi

C H A P T E R O N E BASICS OF HEAT TRANSFER 1

1-1	Thermodynamics and Heat Transfer		
	Application Areas of Heat Transfer 3		

Application Areas of Heat Transfer 3 Historical Background 3

1-2 Engineering Heat Transfer 4

Modeling in Heat Transfer 5

1-3 Heat and Other Forms of Energy 6

Specific Heats of Gases, Liquids, and Solids 7 Energy Transfer 9

1-4 The First Law of Thermodynamics 11

Energy Balance for Closed Systems (Fixed Mass) 12 Energy Balance for Steady-Flow Systems 12 Surface Energy Balance 13

- **1-5** Heat Transfer Mechanisms 17
- **1-6** Conduction 17

Thermal Conductivity 19 Thermal Diffusivity 23

- 1-7 Convection 25
- 1-8 Radiation 27
- **1-9** Simultaneous Heat Transfer Mechanisms 30
- **1-10** Problem-Solving Technique 35

A Remark on Significant Digits 37 Engineering Software Packages 38 Engineering Equation Solver (EES) 39 Heat Transfer Tools (HTT) 39 *Topic of Special Interest:* Thermal Comfort 40 Summary 46 References and Suggested Reading 47 Problems 47

C H A P T E R T W O HEAT CONDUCTION EQUATION 61

2-1 Introduction 62

Steady versus Transient Heat Transfer 63 Multidimensional Heat Transfer 64 Heat Generation 66

2-2 One-Dimensional Heat Conduction Equation 68

Heat Conduction Equation in a Large Plane Wall 68 Heat Conduction Equation in a Long Cylinder 69 Heat Conduction Equation in a Sphere 71 Combined One-Dimensional Heat Conduction Equation 72

2-3 General Heat Conduction Equation 74

Rectangular Coordinates 74 Cylindrical Coordinates 75 Spherical Coordinates 76

2-4 Boundary and Initial Conditions 77

- 1 Specified Temperature Boundary Condition 78
- 2 Specified Heat Flux Boundary Condition 79
- 3 Convection Boundary Condition 81
- 4 Radiation Boundary Condition 82
- 5 Interface Boundary Conditions 83
- 6 Generalized Boundary Conditions 84
- **2-5** Solution of Steady One-Dimensional Heat Conduction Problems 86
- **2-6** Heat Generation in a Solid 97
- **2-7** Variable Thermal Conductivity, k(T) 104

Topic of Special Interest:A Brief Review of Differential Equations107Summary111References and Suggested Reading112Problems113

C H A P T E R T H R E E STEADY HEAT CONDUCTION 127

3-1 Steady Heat Conduction in Plane Walls 128 The Thermal Resistance Concept 129

vii

viii CONTENTS

Thermal Resistance Network 131 Multilayer Plane Walls 133

- **3-2** Thermal Contact Resistance 138
- **3-3** Generalized Thermal Resistance Networks 143
- **3-4** Heat Conduction in Cylinders and Spheres 146

Multilayered Cylinders and Spheres 148

- **3-5** Critical Radius of Insulation 153
- **3-6** Heat Transfer from Finned Surfaces 156

Fin Equation 157 Fin Efficiency 160 Fin Effectiveness 163 Proper Length of a Fin 165

3-7 Heat Transfer in Common Configurations 169

Topic of Special Interest:Heat Transfer Through Walls and Roofs175Summary185References and Suggested Reading186Problems187

C H A P T E R F O U R TRANSIENT HEAT CONDUCTION 209

4-1 Lumped System Analysis 210

Criteria for Lumped System Analysis 211 Some Remarks on Heat Transfer in Lumped Systems 213

- **4-2** Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial Effects 216
- **4-3** Transient Heat Conduction in Semi-Infinite Solids 228
- **4-4** Transient Heat Conduction in Multidimensional Systems 231

Topic of Special Interest:Refrigeration and Freezing of Foods239Summary250References and Suggested Reading251Problems252

C H A P T E R F I V E NUMERICAL METHODS IN HEAT CONDUCTION 265

- **5-1** Why Numerical Methods? 266
 - 1 Limitations 267
 - 2 Better Modeling 267
 - 3 Flexibility 268

- 4 Complications 268
- 5 Human Nature 268
- **5-2** Finite Difference Formulation of Differential Equations 269
- **5-3** One-Dimensional Steady Heat Conduction 272

Boundary Conditions 274

5-4 Two-Dimensional Steady Heat Conduction 282

> Boundary Nodes 283 Irregular Boundaries 287

5-5 Transient Heat Conduction 291

Transient Heat Conduction in a Plane Wall 293 Two-Dimensional Transient Heat Conduction 304 *Topic of Special Interest:* Controlling Numerical Error 309 Summary 312 References and Suggested Reading 314 Problems 314

C H A P T E R S I X FUNDAMENTALS OF CONVECTION 333

6-1 Physical Mechanism on Convection 334 Nusselt Number 336

6-2 Classification of Fluid Flows 337

Viscous versus Inviscid Flow 337 Internal versus External Flow 337 Compressible versus Incompressible Flow 337 Laminar versus Turbulent Flow 338 Natural (or Unforced) versus Forced Flow 338 Steady versus Unsteady (Transient) Flow 338 One-, Two-, and Three-Dimensional Flows 338

6-3 Velocity Boundary Layer 339

Surface Shear Stress 340

6-4 Thermal Boundary Layer 341

Prandtl Number 341

6-5 Laminar and Turbulent Flows 342

Reynolds Number 343

- **6-6** Heat and Momentum Transfer in Turbulent Flow 343
- **6-7** Derivation of Differential Convection Equations 345

Conservation of Mass Equation345Conservation of Momentum Equations346Conservation of Energy Equation348

6-8 Solutions of Convection Equations for a Flat Plate 352

The Energy Equation 354

- **6-9** Nondimensionalized Convection Equations and Similarity 356
- **6-10** Functional Forms of Friction and Convection Coefficients 357
- **6-11** Analogies between Momentum and Heat Transfer 358

Summary 361 References and Suggested Reading 362 Problems 362

C H A P T E R S E V E N EXTERNAL FORCED CONVECTION 367

7-1 Drag Force and Heat Transfer in External Flow 368

Friction and Pressure Drag 368 Heat Transfer 370

7-2 Parallel Flow over Flat Plates 371

Friction Coefficient 372 Heat Transfer Coefficient 373 Flat Plate with Unheated Starting Length 375 Uniform Heat Flux 375

7-3 Flow across Cylinders and Spheres 380

Effect of Surface Roughness 382 Heat Transfer Coefficient 384

7-4 Flow across Tube Banks 389

Pressure Drop 392 *Topic of Special Interest:* Reducing Heat Transfer through Surfaces 395 Summary 406 References and Suggested Reading 407 Problems 408

C H A P T E R E I G H T INTERNAL FORCED CONVECTION 419

- **8-1** Introduction 420
- 8-2 Mean Velocity and Mean Temperature 420 Laminar and Turbulent Flow in Tubes 422
- 8-3 The Entrance Region 423 Entry Lengths 425

8-4 General Thermal Analysis 426

Constant Surface Heat Flux (\dot{q}_s = constant) 427 Constant Surface Temperature (T_s = constant) 428

8-5 Laminar Flow in Tubes 431

Pressure Drop 433 Temperature Profile and the Nusselt Number 434 Constant Surface Heat Flux 435 Constant Surface Temperature 436 Laminar Flow in Noncircular Tubes 436 Developing Laminar Flow in the Entrance Region 436

8-6 Turbulent Flow in Tubes 441

Rough Surfaces 442 Developing Turbulent Flow in the Entrance Region 443 Turbulent Flow in Noncircular Tubes 443 Flow through Tube Annulus 444 Heat Transfer Enhancement 444 Summary 449 References and Suggested Reading 450 Problems 452

C H A P T E R N I N E NATURAL CONVECTION 459

- **9-1** Physical Mechanism of Natural Convection 460
- **9-2** Equation of Motion and the Grashof Number 463

The Grashof Number 465

9-3 Natural Convection over Surfaces 466

Vertical Plates (T_s = constant) 467 Vertical Plates (\dot{q}_s = constant) 467 Vertical Cylinders 467 Inclined Plates 467 Horizontal Plates 469 Horizontal Cylinders and Spheres 469

9-4 Natural Convection from Finned Surfaces and PCBs 473

Natural Convection Cooling of Finned Surfaces ($T_s = \text{constant}$) 473 Natural Convection Cooling of Vertical PCBs ($\dot{q}_s = \text{constant}$) 474 Mass Flow Rate through the Space between Plates 475

9-5 Natural Convection inside Enclosures 477

Effective Thermal Conductivity 478 Horizontal Rectangular Enclosures 479 Inclined Rectangular Enclosures 479 Vertical Rectangular Enclosures 480 Concentric Cylinders 480 Concentric Spheres 481 Combined Natural Convection and Radiation 481

CONTENTS

9-6 Combined Natural and Forced Convection 486

Topic of Special Interest:Heat Transfer through Windows489Summary499References and Suggested Reading500Problems501

C H A P T E R T E N BOILING AND CONDENSATION 515

10-1 Boiling Heat Transfer 516

10-2 Pool Boiling 518

Boiling Regimes and the Boiling Curve518Heat Transfer Correlations in Pool Boiling522Enhancement of Heat Transfer in Pool Boiling526

- **10-3** Flow Boiling 530
- **10-4** Condensation Heat Transfer 532

10-5 Film Condensation 532

Flow Regimes 534 Heat Transfer Correlations for Film Condensation 535

10-6 Film Condensation Inside Horizontal Tubes 545

10-7 Dropwise Condensation 545

Topic of Special Interest:Heat Pipes546Summary551References and Suggested Reading553Problems553

C H A P T E R E L E V E N FUNDAMENTALS OF THERMAL RADIATION 561

- **11-1** Introduction 562
- **11-2** Thermal Radiation 563
- **11-3** Blackbody Radiation 565
- **11-4** Radiation Intensity 571

Solid Angle 572 Intensity of Emitted Radiation 573 Incident Radiation 574 Radiosity 575 Spectral Quantities 575

11-5 Radiative Properties 577

Emissivity 578 Absorptivity, Reflectivity, and Transmissivity 582 Kirchhoff's Law 584 The Greenhouse Effect 585

11-6 Atmospheric and Solar Radiation 586

Topic of Special Interest:Solar Heat Gain through Windows590Summary597References and Suggested Reading599Problems599

C H A P T E R T W E L V E RADIATION HEAT TRANSFER 605

- **12-1** The View Factor 606
- **12-2** View Factor Relations 609
 - 1 The Reciprocity Relation 610
 - 2 The Summation Rule 613
 - 3 The Superposition Rule 615
 - 4 The Symmetry Rule 616

View Factors between Infinitely Long Surfaces: The Crossed-Strings Method 618

12-3 Radiation Heat Transfer: Black Surfaces 620

12-4 Radiation Heat Transfer: Diffuse, Gray Surfaces 623

Radiosity 623 Net Radiation Heat Transfer to or from a Surface 623 Net Radiation Heat Transfer between Any Two Surfaces 625 Methods of Solving Radiation Problems 626 Radiation Heat Transfer in Two-Surface Enclosures 627 Radiation Heat Transfer in Three-Surface Enclosures 629

12-5 Radiation Shields and the Radiation Effect 635

Radiation Effect on Temperature Measurements 637

12-6 Radiation Exchange with Emitting and Absorbing Gases 639

Radiation Properties of a Participating Medium 640 Emissivity and Absorptivity of Gases and Gas Mixtures 642 *Topic of Special Interest:* Heat Transfer from the Human Body 649 Summary 653 References and Suggested Reading 655 Problems 655

CHAPTER THIRTEEN HEAT EXCHANGERS 667

- **13-1** Types of Heat Exchangers 668
- **13-2** The Overall Heat Transfer Coefficient 671 Fouling Factor 674
- **13-3** Analysis of Heat Exchangers 678

xi CONTENTS

13-4 The Log Mean Temperature Difference Method 680

Counter-Flow Heat Exchangers 682 Multipass and Cross-Flow Heat Exchangers: Use of a Correction Factor 683

13-5 The Effectiveness–NTU Method 690

13-6 Selection of Heat Exchangers 700

Heat Transfer Rate 700 Cost 700 Pumping Power 701 Size and Weight 701 Type 701 Materials 701 Other Considerations 702 Summary 703 References and Suggested Reading 704 Problems 705

CHAPTER FOURTEEN MASS TRANSFER 717

14-1 Introduction 718

14-2 Analogy between Heat and Mass Transfer 719

Temperature720Conduction720Heat Generation720Convection721

14-3 Mass Diffusion 721

 Mass Basis 722
 Mole Basis 722
 Special Case: Ideal Gas Mixtures 723
 Fick's Law of Diffusion: Stationary Medium Consisting of Two Species 723

- 14-4 Boundary Conditions 727
- **14-5** Steady Mass Diffusion through a Wall 732
- **14-6** Water Vapor Migration in Buildings 736
- **14-7** Transient Mass Diffusion 740

14-8 Diffusion in a Moving Medium 743

Special Case: Gas Mixtures at Constant Pressure and Temperature 747 Diffusion of Vapor through a Stationary Gas: Stefan Flow 748 Equimolar Counterdiffusion 750

14-9 Mass Convection 754

Analogy between Friction, Heat Transfer, and Mass Transfer Coefficients 758
Limitation on the Heat–Mass Convection Analogy 760
Mass Convection Relations 760 **14-10** Simultaneous Heat and Mass Transfer 763

Summary 769 References and Suggested Reading 771 Problems 772

C H A P T E R F I F T E E N COOLING OF ELECTRONIC EQUIPMENT 785

- **15-1** Introduction and History 786
- **15-2** Manufacturing of Electronic Equipment 787

The Chip Carrier 787 Printed Circuit Boards 789 The Enclosure 791

- **15-3** Cooling Load of Electronic Equipment 793
- **15-4** Thermal Environment 794
- **15-5** Electronics Cooling in Different Applications 795

15-6 Conduction Cooling 797

Conduction in Chip Carriers 798 Conduction in Printed Circuit Boards 803 Heat Frames 805 The Thermal Conduction Module (TCM) 810

- **15-7** Air Cooling: Natural Convection and Radiation 812
- **15-8** Air Cooling: Forced Convection 820

Fan Selection 823 Cooling Personal Computers 826

15-9 Liquid Cooling 833

15-10 Immersion Cooling 836

Summary 841 References and Suggested Reading 842 Problems 842

APPENDIX 1

PROPERTY TABLES AND CHARTS (SI UNITS) 855

- Table A-1Molar Mass, Gas Constant, and
Critical-Point Properties856
- Table A-2Boiling- and Freezing-PointProperties857
- **Table A-3**Properties of Solid Metals858
- **Table A-4**Properties of Solid Nonmetals861
- **Table A-5**Properties of Building Materials862

xii CONTENTS

Table A-6	Properties of Insulating Materials 864
Table A-7	Properties of Common Foods 865
Table A-8	Properties of Miscellaneous Materials 867
Table A-9	Properties of Saturated Water 868
Table A-10	Properties of Saturated Refrigerant-134a 869
Table A-11	Properties of Saturated Ammonia 870
Table A-12	Properties of Saturated Propane 871
Table A-13	Properties of Liquids 872
Table A-14	Properties of Liquid Metals 873
Table A-15	Properties of Air at 1 atm Pressure 874
Table A-16	Properties of Gases at 1 atm Pressure 875
Table A-17	Properties of the Atmosphere at High Altitude 877
Table A-18	Emissivities of Surfaces 878
Table A-19	Solar Radiative Properties of Materials 880
Figure A-20	The Moody Chart for the Friction Factor for Fully Developed Flow in Circular Tubes 881

APPENDIX 2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS) 883

Table A-1EMolar Mass, Gas Constant, and
Critical-Point Properties884

Table A-2E	Boiling- and Freezing-Point
	Properties 885
Table A-3E	Properties of Solid Metals 886
Table A-4E	Properties of Solid Nonmetals 889
Table A-5E	Properties of Building Materials 890
Table A-6E	Properties of Insulating Materials 892
Table A-7E	Properties of Common Foods 893
Table A-8E	Properties of Miscellaneous Materials 895
Table A-9E	Properties of Saturated Water 896
Table A-10E	Properties of Saturated Refrigerant-134a 897
Table A-11E	Properties of Saturated Ammonia 898
Table A-12E	Properties of Saturated Propane 899
Table A-13E	Properties of Liquids 900
Table A-14E	Properties of Liquid Metals 901
Table A-15E	Properties of Air at 1 atm Pressure 902
Table A-16E	Properties of Gases at 1 atm Pressure 903
Table A-17E	Properties of the Atmosphere at High Altitude 905

A P P E N D I X 3 INTRODUCTION TO EES 907 INDEX 921

TABLE OF EXAMPLES

C H A P T E R O N E BASICS OF HEAT TRANSFER 1

Example 1-1	Heating of a Copper Ball 10
Example 1-2	Heating of Water in an Electric Teapot 14
Example 1-3	Heat Loss from Heating Ducts in a Basement 15
Example 1-4	Electric Heating of a House at High Elevation 16
Example 1-5	The Cost of Heat Loss through a Roof 19
Example 1-6	Measuring the Thermal Conductivity of a Material 23
Example 1-7	Conversion between SI and English Units 24
Example 1-8	Measuring Convection Heat Transfer Coefficient 26
Example 1-9	Radiation Effect on Thermal Comfort 29
Example 1-10	Heat Loss from a Person 31
Example 1-11	Heat Transfer between Two Isothermal Plates 32
Example 1-12	Heat Transfer in Conventional and Microwave Ovens 33
Example 1-13	Heating of a Plate by Solar Energy 34
Example 1-14	Solving a System of Equations with EES 39

C H A P T E R T W O HEAT CONDUCTION EQUATION 61

Example 2-1 Heat Gain by a Refrigerator 67

Example 2-2	Heat Generation in a Hair Dryer 67
Example 2-3	Heat Conduction through the Bottom of a Pan 72
Example 2-4	Heat Conduction in a Resistance Heater 72
Example 2-5	Cooling of a Hot Metal Ball in Air 73
Example 2-6	Heat Conduction in a Short Cylinder 76
Example 2-7	Heat Flux Boundary Condition 80
Example 2-8	Convection and Insulation Boundary Conditions 82
Example 2-9	Combined Convection and Radiation Condition 84
Example 2-10	Combined Convection, Radiation, and Heat Flux 85
Example 2-11	Heat Conduction in a Plane Wall 86
Example 2-12	A Wall with Various Sets of Boundary Conditions 88
Example 2-13	Heat Conduction in the Base Plate of an Iron 90
Example 2-14	Heat Conduction in a Solar Heated Wall 92
Example 2-15	Heat Loss through a Steam Pipe 94
Example 2-16	Heat Conduction through a Spherical Shell 96
Example 2-17	Centerline Temperature of a Resistance Heater 100
Example 2-18	Variation of Temperature in a Resistance Heater 100
Example 2-19	Heat Conduction in a Two-Layer Medium 102

xiv CONTENTS

Example 2-20	Variation of Temperature in a Wall with $k(T)$ 105
Example 2-21	Heat Conduction through a Wall with $k(T) = 106$

C H A P T E R T H R E E STEADY HEAT CONDUCTION 127

Example 3-1	Heat Loss through a Wall 134
Example 3-2	Heat Loss through a Single-Pane Window 135
Example 3-3	Heat Loss through Double-Pane Windows 136
Example 3-4	Equivalent Thickness for Contact Resistance 140
Example 3-5	Contact Resistance of Transistors 141
Example 3-6	Heat Loss through a Composite Wall 144
Example 3-7	Heat Transfer to a Spherical Container 149
Example 3-8	Heat Loss through an Insulated Steam Pipe 151
Example 3-9	Heat Loss from an Insulated Electric Wire 154
Example 3-10	Maximum Power Dissipation of a Transistor 166
Example 3-11	Selecting a Heat Sink for a Transistor 167
Example 3-12	Effect of Fins on Heat Transfer from Steam Pipes 168
Example 3-13	Heat Loss from Buried Steam Pipes 170
Example 3-14	Heat Transfer between Hot and Cold Water Pipes 173
Example 3-15	Cost of Heat Loss through Walls in Winter 174
Example 3-16	The <i>R</i> -Value of a Wood Frame Wall 179
Example 3-17	The <i>R</i> -Value of a Wall with Rigid Foam 180
Example 3-18	The <i>R</i> -Value of a Masonry Wall 181
Example 3-19	The <i>R</i> -Value of a Pitched Roof 182

C H A P T E R F O U R TRANSIENT HEAT CONDUCTION 209

Example 4-1	Temperature Measurement by Thermocouples 214
Example 4-2	Predicting the Time of Death 215
Example 4-3	Boiling Eggs 224
Example 4-4	Heating of Large Brass Plates in an Oven 225
Example 4-5	Cooling of a Long Stainless Steel Cylindrical Shaft 226
Example 4-6	Minimum Burial Depth of Water Pipes to Avoid Freezing 230
Example 4-7	Cooling of a Short Brass Cylinder 234
Example 4-8	Heat Transfer from a Short Cylinder 235
Example 4-9	Cooling of a Long Cylinder by Water 236
Example 4-10	Refrigerating Steaks while Avoiding Frostbite 238
Example 4-11	Chilling of Beef Carcasses in a Meat Plant 248

CHAPTER FIVE NUMERICAL METHODS IN HEAT CONDUCTION 265

Example 5-1	Steady Heat Conduction in a Large Uranium Plate 277
Example 5-2	Heat Transfer from Triangular Fins 279
Example 5-3	Steady Two-Dimensional Heat Conduction in L-Bars 284
Example 5-4	Heat Loss through Chimneys 287
Example 5-5	Transient Heat Conduction in a Large Uranium Plate 296
Example 5-6	Solar Energy Storage in Trombe Walls 300
Example 5-7	Transient Two-Dimensional Heat Conduction in L-Bars 305

C H A P T E R S I X FUNDAMENTALS OF CONVECTION 333

Example 6-1	Temperature Rise of Oil in a
	Journal Bearing 350
Example 6-2	Finding Convection Coefficient from
	Drag Measurement 360

C H A P T E R S E V E N EXTERNAL FORCED CONVECTION 367

Example 7-1	Flow of Hot Oil over a Flat Plate 376
Example 7-2	Cooling of a Hot Block by Forced Air at High Elevation 377
Example 7-3	Cooling of Plastic Sheets by Forced Air 378
Example 7-4	Drag Force Acting on a Pipe in a River 383
Example 7-5	Heat Loss from a Steam Pipe in Windy Air 386
Example 7-6	Cooling of a Steel Ball by Forced Air 387
Example 7-7	Preheating Air by Geothermal Water in a Tube Bank 393
Example 7-8	Effect of Insulation on Surface Temperature 402
Example 7-9	Optimum Thickness of Insulation 403

Example 8-6

Heat Loss from the Ducts of a Heating System 448

C H A P T E R N I N E NATURAL CONVECTION 459

Example 9-1 Heat Loss from Hot Water Pipes 470 Cooling of a Plate in Example 9-2 Different Orientations 471 Example 9-3 Optimum Fin Spacing of a Heat Sink 476 **Example 9-4** Heat Loss through a Double-Pane Window 482 Example 9-5 Heat Transfer through a Spherical Enclosure 483 **Example 9-6** Heating Water in a Tube by Solar Energy 484 Example 9-7 U-Factor for Center-of-Glass Section of Windows 496 Example 9-8 Heat Loss through Aluminum Framed Windows 497 **Example 9-9** U-Factor of a Double-Door Window 498

C H A P T E R T E N BOILING AND CONDENSATION 515

Example 10-1 Nucleate Boiling Water in a Pan 526 Example 10-2 Peak Heat Flux in Nucleate Boiling 528 Example 10-3 Film Boiling of Water on a Heating Element 529 Example 10-4 Condensation of Steam on a Vertical Plate 541 Example 10-5 Condensation of Steam on a Tilted Plate 542 Example 10-6 Condensation of Steam on Horizontal Tubes 543 Example 10-7 Condensation of Steam on Horizontal Tube Banks 544

C H A P T E R E I G H T INTERNAL FORCED CONVECTION 419

Example 8-1	Heating of Water in a Tube by Steam 430
Example 8-2	Pressure Drop in a Pipe 438
Example 8-3	Flow of Oil in a Pipeline through a Lake 439
Example 8-4	Pressure Drop in a Water Pipe 445
Example 8-5	Heating of Water by Resistance Heaters in a Tube 446

CONTENTS

Example 10-8 Replacing a Heat Pipe by a Copper Rod 550

CHAPTER ELEVEN FUNDAMENTALS OF THERMAL RADIATION 561

Example 11-1	Radiation Emission from a Black Ball 568
Example 11-2	Emission of Radiation from a Lightbulb 571
Example 11-3	Radiation Incident on a Small Surface 576
Example 11-4	Emissivity of a Surface and Emissive Power 581
Example 11-5	Selective Absorber and Reflective Surfaces 589
Example 11-6	Installing Reflective Films on Windows 596

C H A P T E R T W E L V E RADIATION HEAT TRANSFER 605

Example 12-1	View Factors Associated with Two Concentric Spheres 614
Example 12-2	Fraction of Radiation Leaving through an Opening 615
Example 12-3	View Factors Associated with a Tetragon 617
Example 12-4	View Factors Associated with a Triangular Duct 617
Example 12-5	The Crossed-Strings Method for View Factors 619
Example 12-6	Radiation Heat Transfer in a Black Furnace 621
Example 12-7	Radiation Heat Transfer between Parallel Plates 627
Example 12-8	Radiation Heat Transfer in a Cylindrical Furnace 630
Example 12-9	Radiation Heat Transfer in a Triangular Furnace 631
Example 12-10	Heat Transfer through a Tubular Solar Collector 632
Example 12-11	Radiation Shields 638

Example 12-11 Radiation Shields 638

Example 12-12	Radiation Effect on Temperature Measurements 639
Example 12-13	Effective Emissivity of Combustion Gases 646
Example 12-14	Radiation Heat Transfer in a Cylindrical Furnace 647
Example 12-15	Effect of Clothing on Thermal Comfort 652

CHAPTER THIRTEEN HEAT EXCHANGERS 667

Example 13-1	Overall Heat Transfer Coefficient of a Heat Exchanger 675
Example 13-2	Effect of Fouling on the Overall Heat Transfer Coefficient 677
Example 13-3	The Condensation of Steam in a Condenser 685
Example 13-4	Heating Water in a Counter-Flow Heat Exchanger 686
Example 13-5	Heating of Glycerin in a Multipass Heat Exchanger 687
Example 13-6	Cooling of an Automotive Radiator 688
Example 13-7	Upper Limit for Heat Transfer in a Heat Exchanger 691
Example 13-8	Using the Effectiveness– NTU Method 697
Example 13-9	Cooling Hot Oil by Water in a Multipass Heat Exchanger 698
Example 13-10	Installing a Heat Exchanger to Save Energy and Money 702

CHAPTER FOURTEEN MASS TRANSFER 717

Example 14-1 Determining Mass Fractions from Mole Fractions 727
Example 14-2 Mole Fraction of Water Vapor at the Surface of a Lake 728
Example 14-3 Mole Fraction of Dissolved Air in Water 730
Example 14-4 Diffusion of Hydrogen Gas into a Nickel Plate 732

xvii CONTENTS

Example 14-5	Diffusion of Hydrogen through a Spherical Container 735
Example 14-6	Condensation and Freezing of Moisture in the Walls 738
Example 14-7	Hardening of Steel by the Diffusion of Carbon 742
Example 14-8	Venting of Helium in the Atmosphere by Diffusion 751
Example 14-9	Measuring Diffusion Coefficient by the Stefan Tube 752
Example 14-10	Mass Convection inside a Circular Pipe 761
Example 14-11	Analogy between Heat and Mass Transfer 762
Example 14-12	Evaporative Cooling of a Canned Drink 765
Example 14-13	Heat Loss from Uncovered Hot Water Baths 766

C H A P T E R F I F T E E N COOLING OF ELECTRONIC EQUIPMENT 785

Example 15-1	Predicting the Junction Temperature
	of a Transistor 788
Example 15-2	Determining the Junction-to-Case

- Thermal Resistance 789
- **Example 15-3** Analysis of Heat Conduction in a Chip 799
- **Example 15-4** Predicting the Junction Temperature of a Device 802

Example 15-5	Heat Conduction along a PCB with Copper Cladding 804
Example 15-6	Thermal Resistance of an Epoxy Glass Board 805
Example 15-7	Planting Cylindrical Copper Fillings in an Epoxy Board 806
Example 15-8	Conduction Cooling of PCBs by a Heat Frame 807
Example 15-9	Cooling of Chips by the Thermal Conduction Module 812
Example 15-10	Cooling of a Sealed Electronic Box 816
Example 15-11	Cooling of a Component by Natural Convection 817
Example 15-12	Cooling of a PCB in a Box by Natural Convection 818
Example 15-13	Forced-Air Cooling of a Hollow-Core PCB 826
Example 15-14	Forced-Air Cooling of a Transistor Mounted on a PCB 828
Example 15-15	Choosing a Fan to Cool a Computer 830
Example 15-16	Cooling of a Computer by a Fan 831
Example 15-17	Cooling of Power Transistors on a Cold Plate by Water 835
Example 15-18	Immersion Cooling of a Logic Chip 840

Example 15-19 Cooling of a Chip by Boiling 840